

SCIRT

Innovation Action (IA)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003906

> Start date : 2021-06-01 Duration : 36 Months https://scirt-h2020.eu/

SCIRT.

Prototypes of yarn from task 2.1 with a recycled content over 50 percent

Authors : Mr. Simon FREMEAUX (CETI), Marie VISDOMINE (CETI), Alexis CALLEWAERT (CETI)

SCIRT - Contract Number: 101003906

Project officer:

Document title	Prototypes of yarn from task 2.1 with a recycled content over 50 percent
Author(s)	Mr. Simon FREMEAUX, Marie VISDOMINE (CETI), Alexis CALLEWAERT (CETI)
Number of pages	104
Document type	Deliverable
Work Package	WP02
Document number	D2.2
Issued by	CETI
Date of completion	2023-04-03 17:24:52
Dissemination level	Public

Summary

This report summarizes the recycling process of post-consumers textiles by using the mechanical and thermo-mechanical process for achieving yarns with a recycled content over 50%.

Approval	
Date	Ву
2023-04-04 08:47:31	Mrs. Isabelle CORNU (CETI)
2023-04-11 09:25:47	Mrs. Evelien DILS (VITO)

SCIRT.

Task 2.2 : Increased value recycling of clothing and spinning

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50%

Mechanical recycling

CETI

03/04/2023

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

Your CETI team

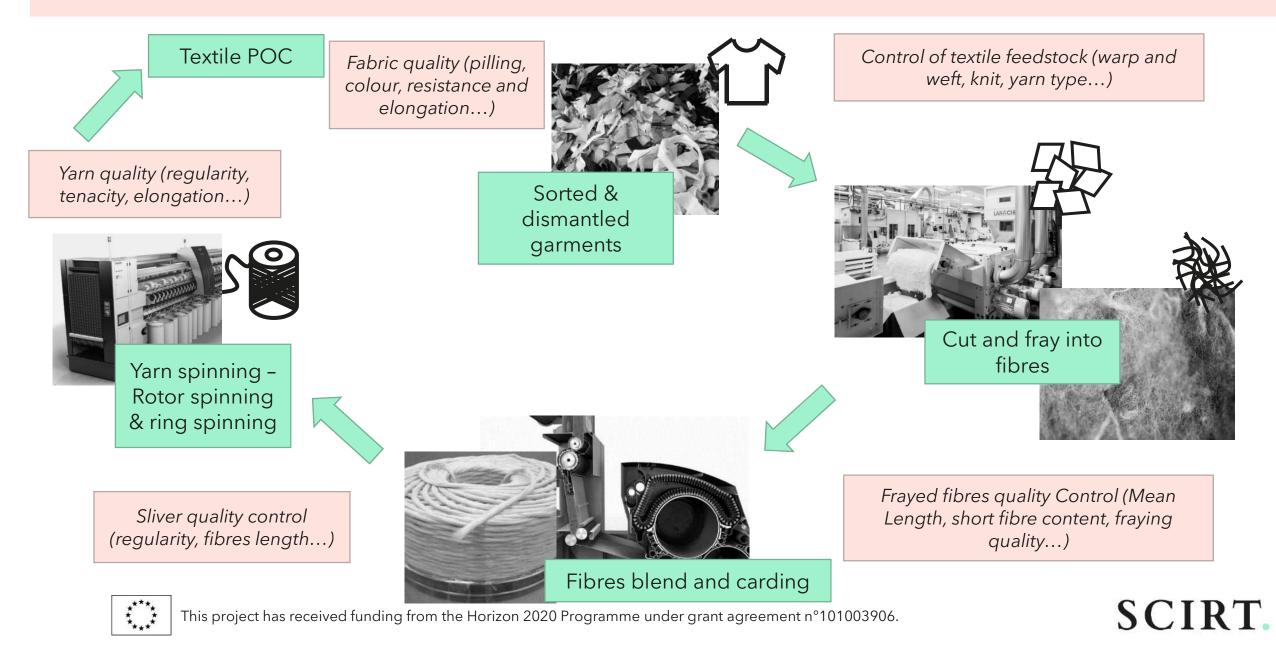
Technicians team: Dominique, Sofian

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical recycling process - Presentation plan

 Situation of the different recycling process investigation	
 Mechanical recycling process and primary materials scientific approach	
 Mechanical recycling process - Recycled cotton - Petit Bateau	
 Mechanical recycling process - Recycled Wool/PET/Elastane - Xandres	
 Mechanical recycling process - Recycled Viscose - Bel & Bo	
 Mechanical recycling process - Recycled Denim - HNST	

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.


Mechanical recycling process - Overview of all conducted tests

Partner	Recycling Trials	Raw Materials	Fraying	Blending	Carding	Rotor Spinning	Ring Spinning	Laboratory
	PRE-CONSUMERS	White Cotton Virgin Cotton (TK)		\bigcirc			\odot	Regularity Tenacity
PHI BATER	POST- CONSUMERS	Coloured Cotton Virgin Cotton (TK)	\bigcirc	\bigcirc			\bigcirc	Regularity Tenacity
*	PRE-CONSUMERS	PET/Wool/EA	\bigcirc	\bigcirc	\bigcirc	Subst Nonwo		Regularity Tenacity
X A N D R E S BELGIUM	POST- CONSUMERS	PET Wool	\bigcirc	\bigcirc		\bigcirc	\bigcirc	Regularity Tenacity
hnst	PRE-CONSUMERS	White Cotton	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Regularity Tenacity
111151	POST- CONSUMERS	Denim Tencel	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Regularity Tenacity
DoloDo	PRE-CONSUMERS	Viscose Tencel	\bigcirc	\bigcirc			\bigcirc	Regularity Tenacity
Bel&Bo	POST- CONSUMERS	Viscose Tencel	\bigcirc			\bigcirc		Regularity Tenacity

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

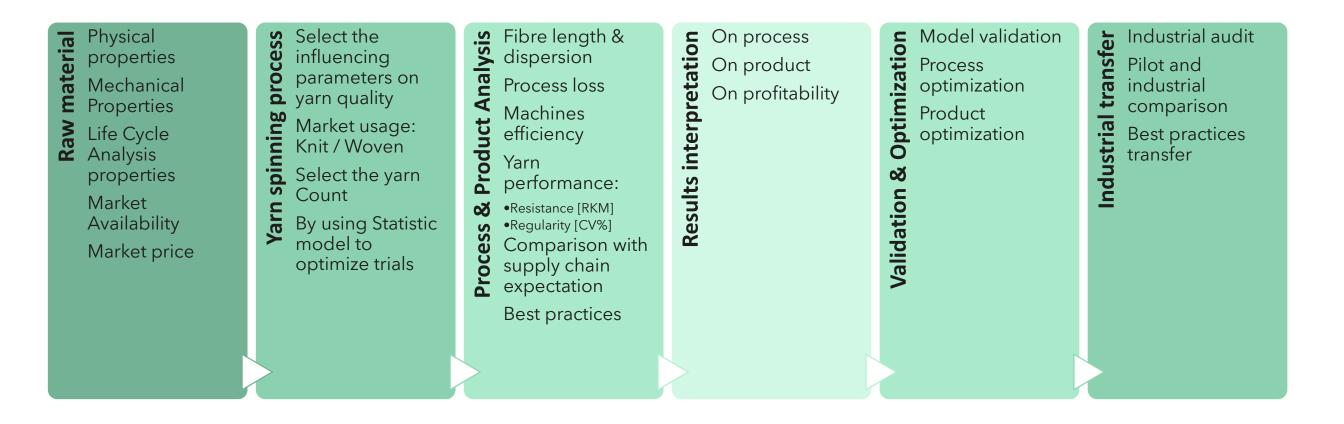
Mechanical recycling process - tests conducted along the workflow

SCIRT.

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50%

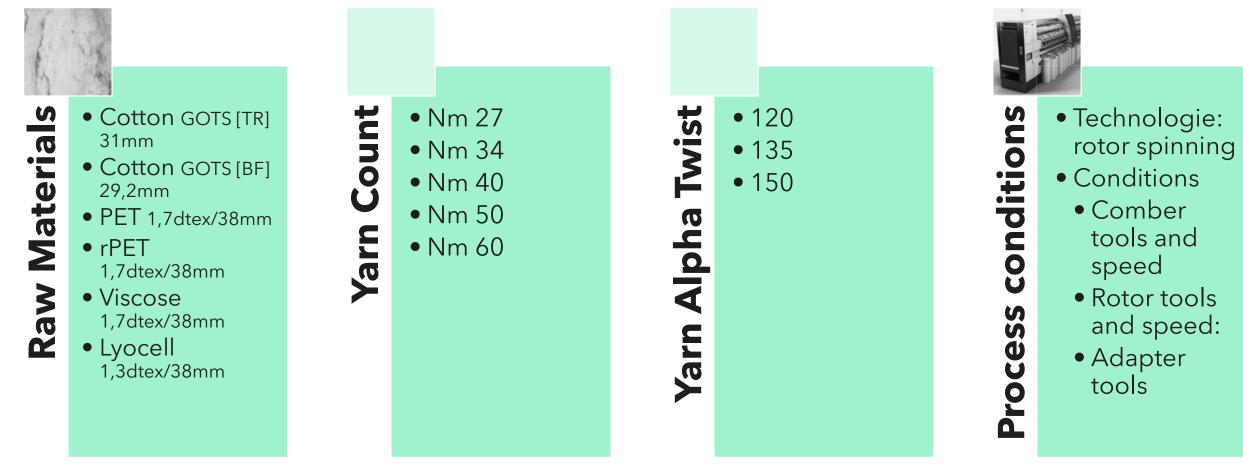
Mechanical recycling

Primary materials - Scientific approach


CETI

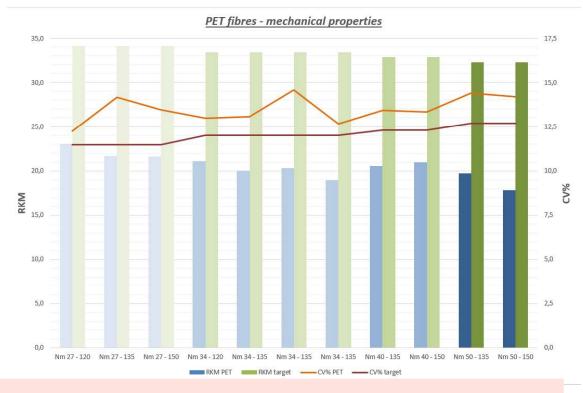
22/02/2023

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.


Scientific approach Explanation

Yarn Spinning Investigation with virgin materials - Investigation plan

Testing on virgin materials allowed us to define the best achievable results on CETI technologies and to evaluate them against the best market practices. Here is the list of material tested and process parameter adaptations.



Yarn Spinning Investigation with virgin materials - Cotton Results



Yarn Spinning Investigation with virgin materials - PET Results

PET vs r-PET

- Fibre specification (tenacity, elongation) → -20% for rPET vs PET
- Regularity: similar CV% linked to the fibre titre and fibre length (1,7dtex/38mm)


Rotor spinning vs Ring spinning

- Difference of 40% for PET and more for rPET
- Regularity linked to the standardized fibres

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Yarn Spinning Investigation with virgin materials - Viscose & Lyocell Results

Lyocell vs Viscose

- Fibre specification (tenacity, elongation) \rightarrow -15% viscose vs Lyocell
- Regularity: similar CV% linked to the fibre titre and fibre length (1,7dtex & 1,3dtex/38mm)

Rotor spinning vs Ring spinning

- Lyocell difference of 30%
- Viscose: similar properties
- Regularity linked to the standardized fibres

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

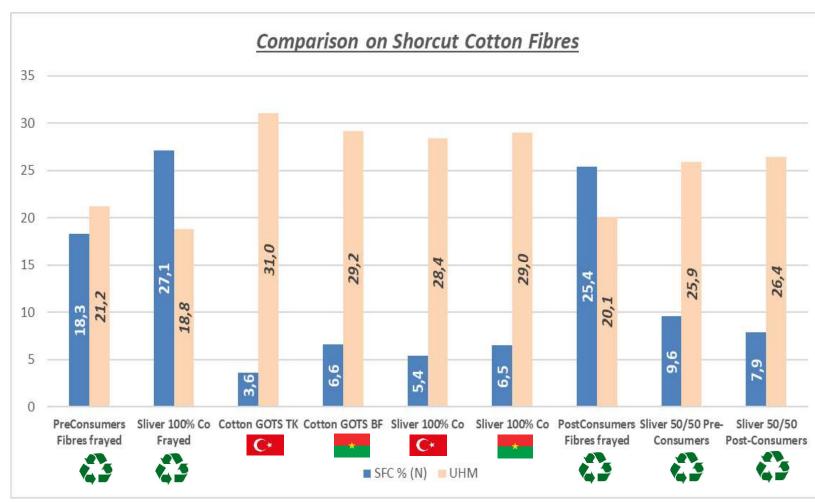
SCIRT.

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50%

Mechanical recycling

Recycled Cotton

CETI


22/02/2023

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

PRIMARY MATERIALS - Carding Analyses

Loss of **Recycled Cotton** fibre length to **10 %** during the carding

Loss of **Virgin Cotton** fibre length to **8 %** during the carding

Mixing fibres enable to ease the carding process for better yarn

Post-Consumer fibres lengths are **compatible** with Virgin Cotton fibres

UHM means Upper Half Mean Length

SFC% means Short Fibre Content below 9mm

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical Recycling Process - PETIT BATEAU

Step 1

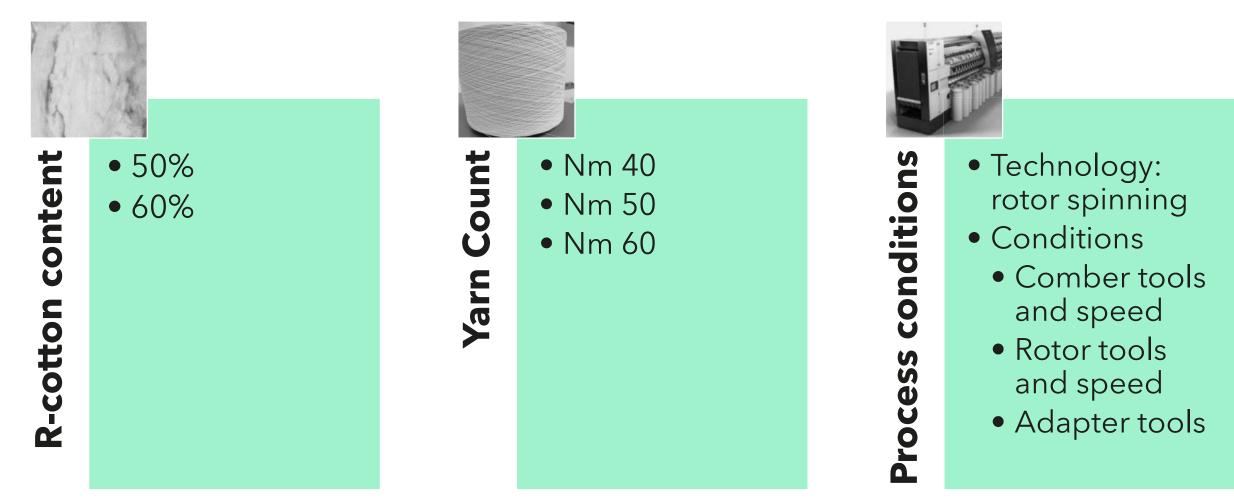
- Pre-consumer feedstock Cotton
- Impact fraying conditions
- Yarn spinning
- •Yarn count: Nm 34
- •Recycled content: 30% & 70%
- •Rotor spinning investigation thanks virgin materials scientific approach

Step 2

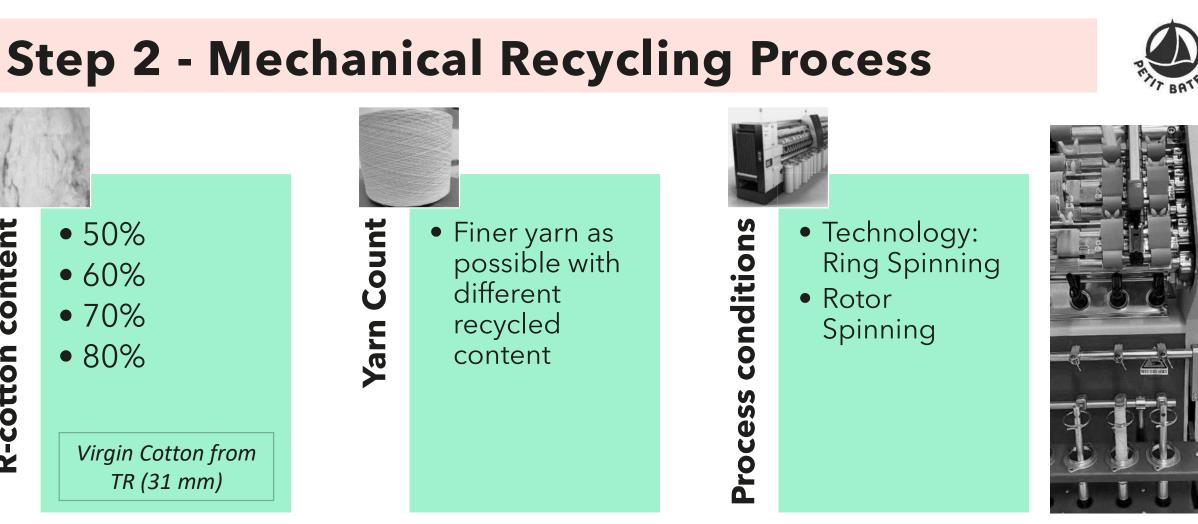
- Pre-consumer feedstock
 Cotton
- Yarn Spinning
- •Yarn count: Nm 40 50 60
- •Recycled content: 50% & 60%
- •Rotor spinning investigation = Step 1 conditions
- Knittability trials

Step 3

• Pre-consumer optimization


Step 4

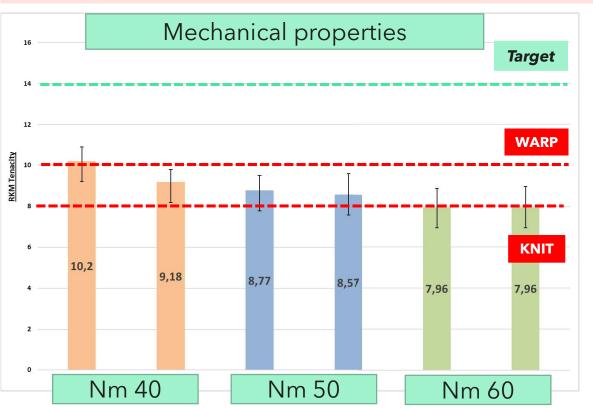
 Post-consumer optimization



Pre-Consumers Trial Plan :

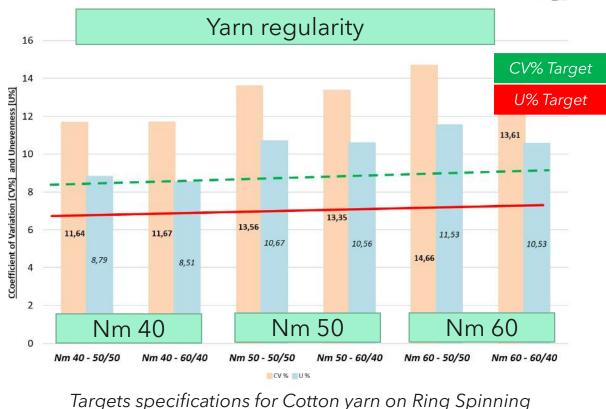
This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Conclusions:


R-cotton content

- Over 50% of recycled content, ring spinning not possible
- At 50% of recycled content, Nm 25 and coarser is possible (without regularity guarantee)

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.



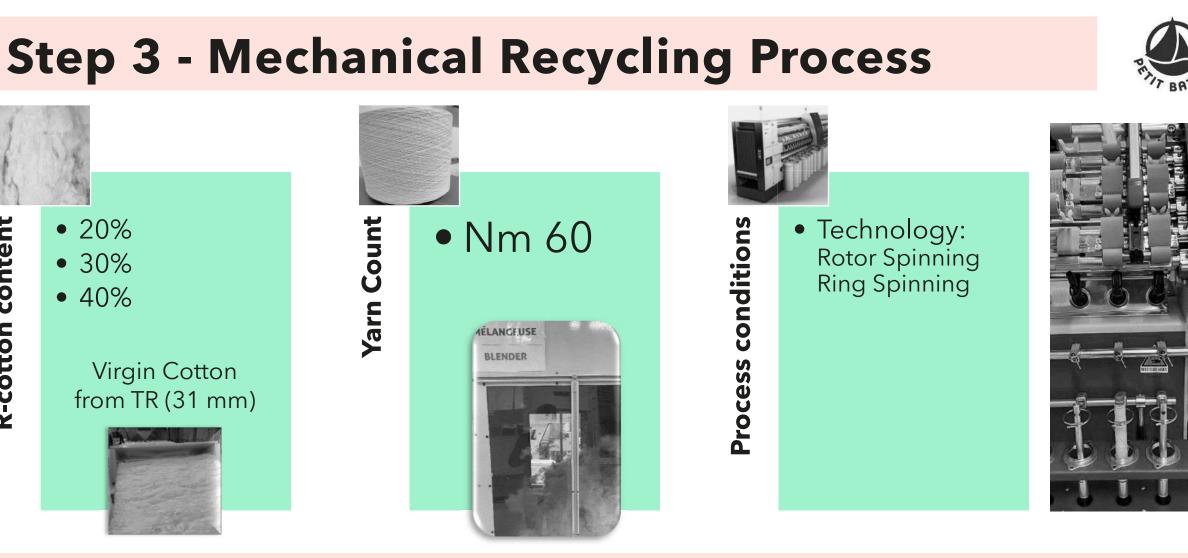
RKM under the specifications

Low piecings during yarn spinning with 50% of recycled content

Loss of 30% of maximum force with recycled content

rargets specifications for cotton yarrion King Spinnin

Increase of the recycled content → Yarn is less regular


Finer yarn with samed recycled content → Less good regularity

However, the number of piecing during the prototyping is more difficult by using the 60/40 ratio

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Conclusions:

R-cotton content

- Easier to create a regular sliver on carding step
- Higher resistance with a lower recycled amount on rotor yarn

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

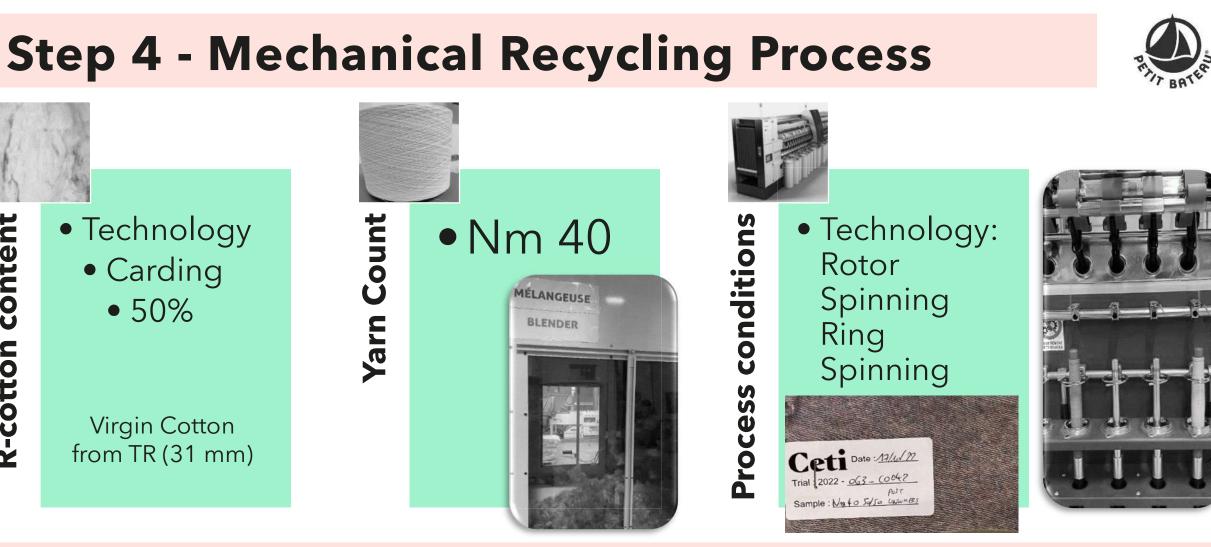
Comparison on Nm 60 yarns from Pre-Consumers cotton fibres

High virgin **content** → **Better resistance** of yarns

Knittability up to 40% recycled content

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Comparison on Nm 60 yarns - Regularity and Unevenness



High virgin content → Less regularity on yarns

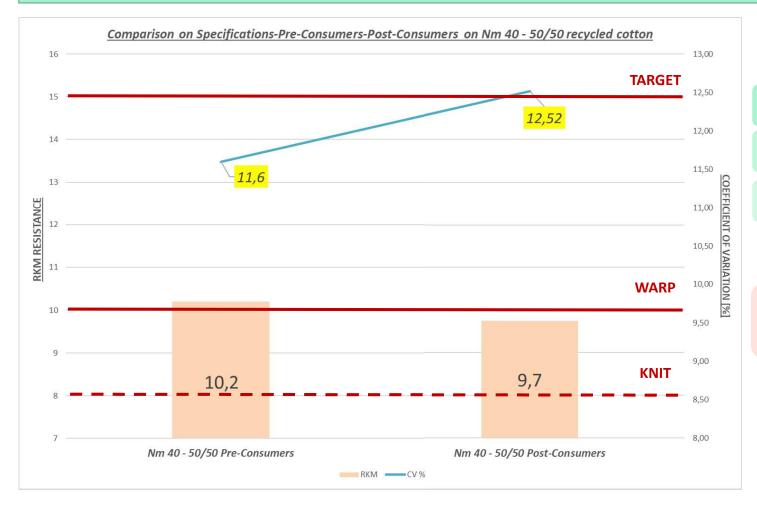
CVm% needs to be the lowest as possible

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Conclusions:

content

R-cotton


- Carding enables to open mostly the recycled yarns into the fibres blend
- Knittability had any issue by using this rotor yarn on Post-Consumers textile waste

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Comparison between specifications, Pre-Consumers and Post-Consumers yarns

RKM under the specifications, but **close to Pre-Consumers** value

Low piecings during yarn spinning with 50% of recycled content

Loss of 30% of maximum force with recycled content

Need to wait for the **fabric quality** through different equipments (Pilling test, Tensile strength...)

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical Recycling Process - Conclusions

		Final compa	risons – Pre-Cor	isumers		
Yarn Count	Nm 40	Nm 40	Nm 50	Nm 50	Nm 60	Nm 60
Yarn Technology	Ring Spinning	Rotor Spinning	Ring Spinning	Rotor Spinning	Ring Spinning	Rotor Spinning
Composition [%]	100% Combed Cotton	50 % R-cotton 50% Cotton	100% Combed Cotton	50 % R-cotton 50% Cotton	100% Combed Cotton	50 % R-cotton 50% Cotton
Elongation	6%	7%	5,65%	5,90%	5,8%	6,3%
Minimum force [cN]	300	207	250		215	
Average force [cN]	375	243	300	174	250	131
CV [%]	7,0%	11,6%	6,4%	13,6%	6,6%	14,7%
RKM	15	10,2	15	8,8	>15	8,0
Regularity [%]	8,4%	8,79%	8,9%	10,67%	8,8%	11,53%
CVm [%]	11,1%		11,1%		11%	
Thinness [/km]	1/1000	1/1000	1/1000	117/1000	1/1000	231/1000
Thickness [/km]	8/1000	6/1000	10/1000	7/1000	10/1000	3/1000
Neps 200% [km]	16/1000	171/1000	19/1000	655/1000	19/1000	798/1000

Einal comparisons Dra Consumary

The final results obtained with recycled cotton and rotor spinning process are not for sure at the level of the ring spinning yarns due to:

- Technology: ring spinning gives better mechanical properties by using special virgin raw material
- High quality virgin cotton (removal of all short fibres)

But can nevertheless be used in knitting application with good final textile application

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical Recycling Process - Conclusions

Final comparisons – Pre-Consumers vs Post-Consumers

Yarn Count	TARGET - Nm 40	Nm 40 - Pre-Consumers	Nm 40 - Post-Consumers
Yarn Technology	Ring Spinning	Rotor Spinning	Rotor Spinning
Composition [%]	100% Combed Cotton	50 % R-cotton - 50% Cotton	50 % R-cotton - 50% Cotton
Elongation	6,3%	7%	5,6%
Minimum force [cN]	300	207	215
Average force [cN]	375	243	239
Average Force CV [%]	7,0%	7,0%	6,8%
RKM	15	10,2	9,7
U [%]	8,4%	8,8%	9,9%
CVm [%]	11,1%	11,6%	12,5%
Thinness [/km]	0	1	4
Thickness [/km]	8	6	8
Neps 200% [/km]	16	171	223

This investigation confirms there is no difference between a pre-consumer and post-consumer cotton in rotor spinning application.

The difference between spinning technologies comes from the raw material (special virgin cotton with short fibre removal) and final type of yarn (stronger in ring spinning).

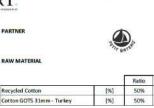
Mechanical Recycling Process - Conclusions

FRAYING			Update: 26/10/2022
PARTNER)	
RAW MATERIAL	Cotton from	n garments	
FRAYING PROCESS			
Size of cut raw materials	[mm]	1	
Inlet Speed 1	[mpm]	1,1	
Inlet Speed 2	[mpm]	1,0	
Loading Speed	[%]	7%	
Sizing Ratio	[l/h]	60	
Cleaning roll Speed	[%]	90%	
First Cadette Speed roll 1	[mpm]	1700	
First Cadette Speed roll 2	[mpm]	2280	
Second Cadette Speed roll 1	[mpm]	2280	
Second Cadette Speed roll 2	[mpm]	2200	
Fan Speed	[%]	70%	
Outlet Speed 1	[mpm]	1,6	
Outlet Speed 2	[mpm]	1,7	
	[mm]	5	
Opening Cadette 1	[mm]	6	
	(mm)	8	
Opening Cadette 2	[mm]	9	
ANALYSIS FIBER LENGTH			
Span length SL 2,5 %	[mm]	22,4	
Span length SL 50 %	[mm]	8,9	
Uniformity ratio UR %	[mm]	39,7	
Short fiber content SFC % (N), <9mm	[%]	25,4%	
Mean Length ML	[mm]	13,5	
Upper High Mean Length UHM	[mm]	20,1	
Uniformity Index UI %	[%]	67,4%	

[mm] 7

[%] 40,6%

Ceti


Span length SL 66,7 %

RAW MATERIAL
Recycled Cotton
Cotton GOTS 31mm - Turkey
OPENING BLENDING CARDING
Equalizer
Vertical Conveyor
Breast Conveyor
Feeding Cylinder
Opening Cylinder
Ribbon Weight
Feed Weight
Manual Calibration
Sliver Tension
Outlet speed
ANALYSIS FIBER LENGTH
Span length SL 2,5 %
Span length SL 50 %
Uniformity ratio UR %
Short fiber content SFC % (N), <
Mean Length ML
Upper High Mean Length UHM

Uniformity Index UL%

Span length SL 66,7 %

SCIRT.

230

12

230

2300

276 1,76

40

27,3

75

8,9

35.6

[rpm]

[mpm]

[mpm] [rpm]

[g/m] [3->30] [Menu C

[2->29] [mpm]

[mm]

[96]

[mm]

[%]

CARDING

Update: 26/10/2022

PARTNER RAW MATERIAL Recycled Cotton P6() S0% Cotton GOTS 31mm - Turkey P6() S0% ROTOR SPINNING PROCESS

SCIRT

SPINNING

Yarn Count	[Nm]	40
Alpha Twist	[α]	160
Yarn Twist	(T/m)	1025
Rotor	T 64	0 BD
Rotor Speed	[rpm]	60000
Opening roll	D 17	4 DN
Opening roll Speed	[rpm]	8000
Adapter Tool	KSI	(4 A
Torque	TS 30	00/G
Draft Ratio	[U.I.]	190
Plecings	[U.I.]	1
Clearer Cuts	[U.I.]	3
Outlet speed		(
CV %	[%]	14,6%

ANALYSIS STRENGTH				
Tenacity	[cN/dtex]	0,96		
RKM	[U.I.]	9,7		
Elongation	[96]	5,6		
Maximum Force	[cN]	239		

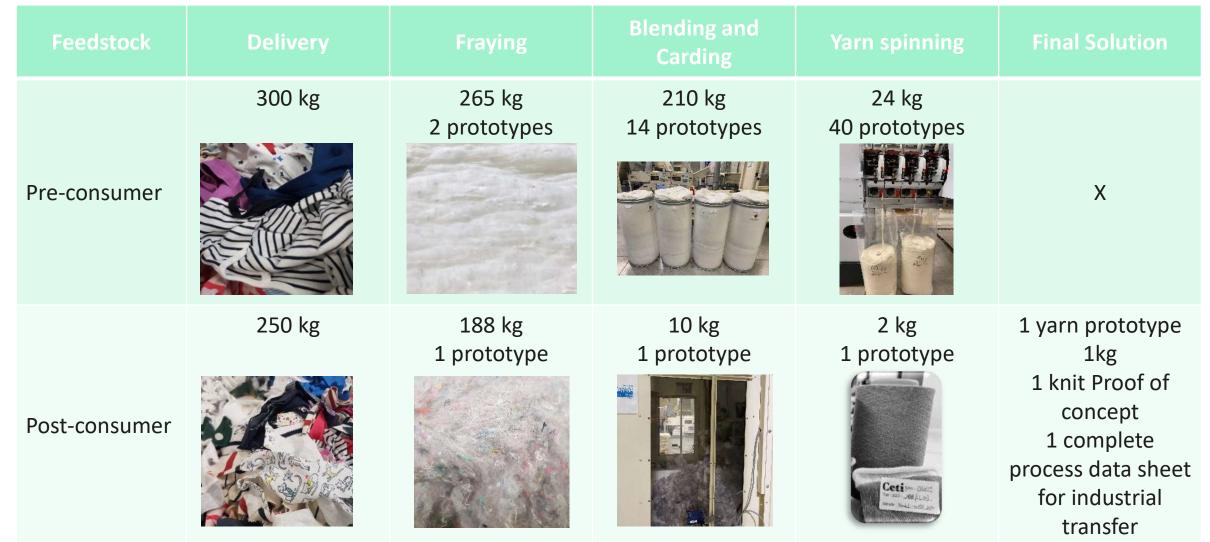
ANALYSIS REGULARITY CV % [%] 12,5 Thin -30% [/km] 1936 U % [%] 9,9 Thin -40% [/km] 119

U %	[%]	9,9	Thin -40%	[/km]	119
Hairiness	[H]	4,82	Thin -50%	[/km]	4
sH %	[sH]	0,91	Thin -60%	[/km]	0

Thick +35%	[/km]	137	Neps + 140%	[/km]	2637
Thick +50%	[/km]	8	Neps + 200%	[/km]	223
Thick +70%	[/km]	2	Neps + 280%	[/km]	21
Thick +100%	[/km]	0	Neps + 400%	[/km]	3

**** * * ***

Ceti


SCIRT.

Undate: 26/10/2022

Summarize of the Investigation - update April 2023

**** * * ****

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50%

Mechanical recycling

Recycled Viscose

CETI

22/02/2023

Bel&Bo

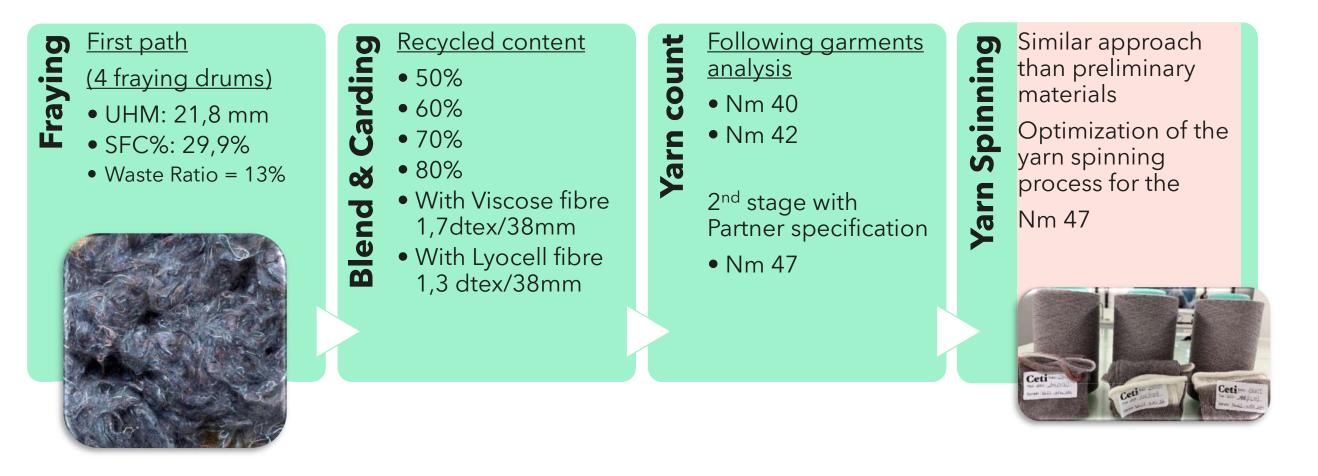
This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical Recycling Process - Steps

Bel&Bo

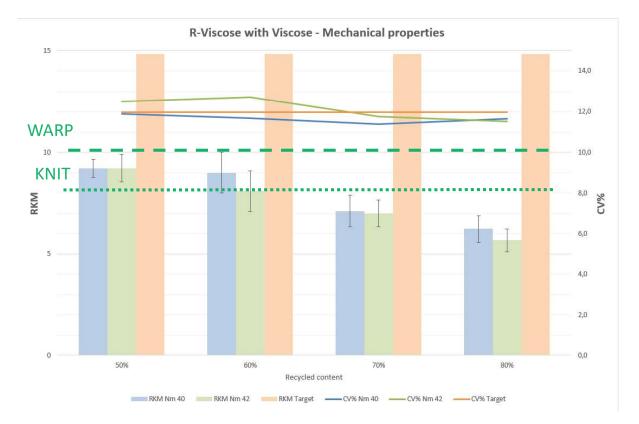
Step 1

- Pre-consumer feedstock of Viscose
- Impact fraying conditions
- Carding of blend recycled content with Viscose and Lyocell
- Yarn spinning with Nm 40, 42


Step 2

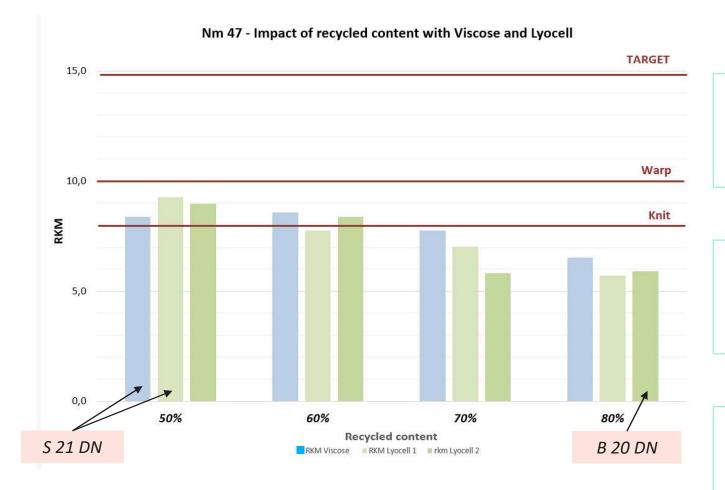
- Yarn spinning with Nm 47
- Optimization of different parameters
- Alpha Twist Comber tool Adapter tool

- Post-consumer feedstock of Viscose
- Fraying with results from step 1
- Carding of blends
- Yarn spinning
- Yarn count: Nm 47


Pre-Consumers investigation:

SCIRT.

Bel&Bo


Improvement of the yarn spinning process on Nm 42

Bel&Bo

Alpha Twist	145	150		155
Opening roll	S 21 DN		B 20 DN	
Adapter type	KSK4A	K4A		KSK6A
Impact of the recycled content on Nm 47 with				
Alpha Twist	160			
Opening roll	S 21 DN			B 20 DN
Adapter type	KSK4A			

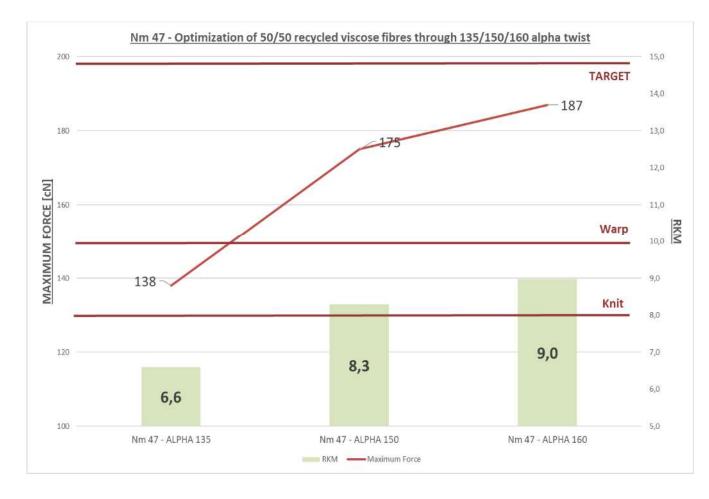
- The high recycled content (>50%) reduces the RKM of min 30%
- Yarn regularity is answering to the target

Recycled content

• RKM reduction while recycled content increases

Lyocell vs Viscose

Alpha torsion impact (100% viscose Nm 50
 → RKM better with alpha 135 than 150)


Opening Roll type

- S21DN opening roll is the most convenient reference in terms of resistance
- B20DN is more convenient for piecings

SCIRT.

Bel&Bo

Alpha Twist

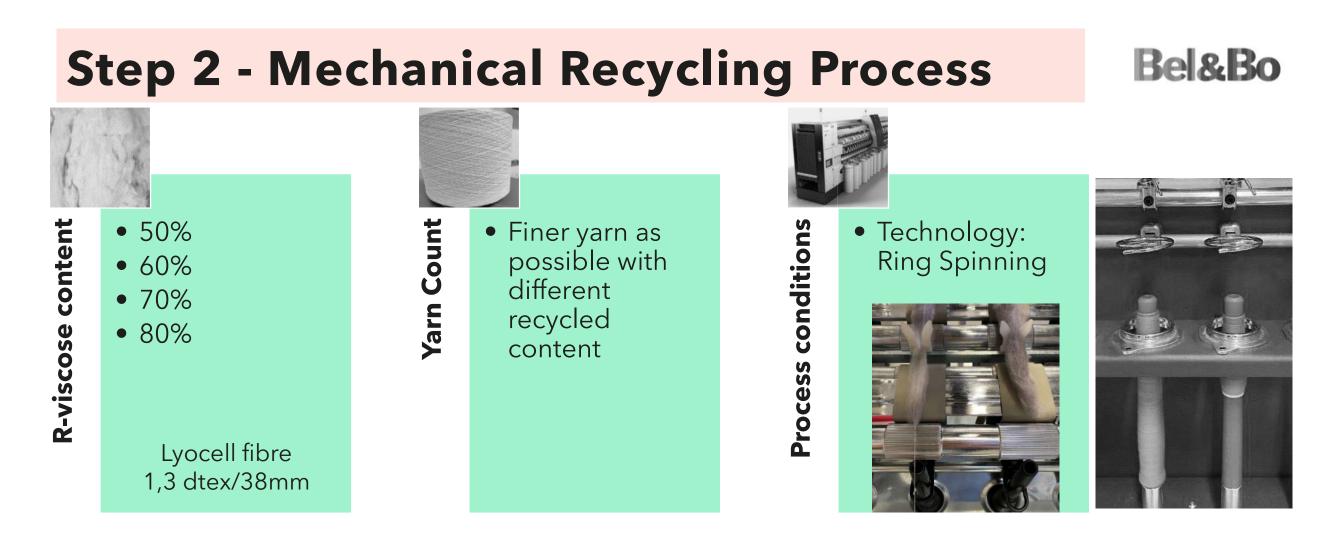
- High value → High resistance
- 160 is better to apply

Opening roll type

• B 20 DN convenient for low piecings

Knittability

- Feasible on alpha 160 and 150
- Break on knitting with alpha 135 → Weaker



This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT

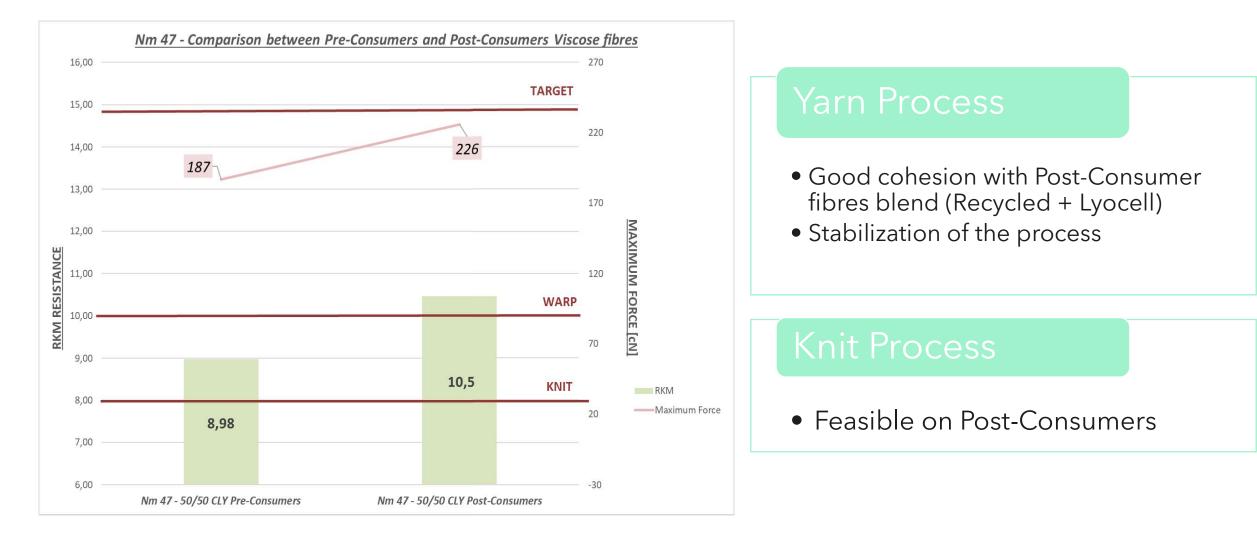
Bel&Bo

Conclusions:

- Over 50% of recyled content, ring spinning is not possible
- At 50% of recycled content, Nm 35 and less is possible (without regularity guarrantee)

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Post-Consumers investigation:



This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

Bel&Bo

SCIRT.

Bel&Bo

Bel&Bo

UNEVENNESS

CV% lower than target \rightarrow **Better** quality

YARN REGULARITY

Post-Consumers materials give **less regularity** than Pre-Consumers materials

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical Recycling Process - Conclusions Bel&Bo

Technical data sheets of the process conditions for the obtention of the yarn with 50% of recycled content

SCIRT SYSTEM CRECULARITY & IDMONATOR HECYCLING OF TEXTULES	FRAYING		SYSTEM CO		CARDING		Update: 26/10/2022	SCIENCE CONCUMPTION		SPINNING	
	PARTNER	Bel&Bo		PARTNER	Bela	&Bo		PARTNER	Bela	&Bo	
	RAW MATERIAL	Viscose from dresses		RAW MATERIAL				RAW MATERIAL		Ratio	
								Recycled Viscose	[%]	50	
	FRAYING PROCESS					Ratio		Lyocell 1,3dtex/38mm	[%]	50	
				Recycled Viscose	[%]	50		-			
	Size of cut raw materials	[mm] 40		Lyocell 1,3dtex/38mm	[%]	50		ROTOR SPINNING PROCESS		8	
	Inlet Speed 1	[mpm] 1,0				7.0-0	•J	Yam Count	[Nm]	47	
	Inlet Speed 2	[mpm] 1,0		OPENING BLENDING				Alpha Twist	[α]	160	
	Loading Speed	[%] 8%						Yarn Twist	[T/m]	1097	
	Sizing Ratio	[l/h] 70		Equalizer	[rpm]	200		Rotor	T 64	0 BD	
	Cleaning roll Speed	[%] 95% [mpm] 1700		Vertical Conveyor	[mpm]	10		Rotor Speed	[rpm]	60000	
	First Cadette Speed roll 1			Breast Conveyor	[rpm]	220		Opening roll	B 2	DDN	
	First Cadette Speed roll 2	[mpm] 2300 [mpm] 2350		Feeding Cylinder	[mpm]	2		Opening roll Speed	[rpm]	8000	
	Second Cadette Speed roll 1 Second Cadette Speed roll 2	[mpm] 2350 [mpm] 2150		Opening Cylinder	[rpm]	1800		Adapter Tool	KS	K4 A	
	Fan Speed	[%] 55%		Ribbon Weight	[g/m]	5	*	Torque	TS 3	0 0/G	
	Outlet Speed 1	[mpm] 1,5		Feed Weight	[3->30]	745		Draft Ratio	[U.I.]	240	
	Outlet Speed 2	[mpm] 1,5		Manual Calibration	[Menu C]	230		Outlet speed	[mpm]	40	
	Outlet Speed 2	[mm] 3		Sliver Tension	[2->29]	1,85		CV %	[%]	12,5%	
	Opening Cadette 1	[mm] 6		Outlet speed	[mpm]	40					
	1	[mm] 8					•	ANALYSIS STRENGTH			
	Opening Cadette 2	[mm] 8		ANALYSIS FIBER LENGTH				Tenacity	[cN/dtex]	1,0	
		fuuul o						RKM	[U.I.]	10,5	
	ANALYSIS FIBER LENGTH			Span length SL 2,5 %	[mm]	34,3	T	Elongation	[%]	7,9	
	ANALISIS HDER LENGTH			Span length SL 50 %	[mm]	14		Maximum Force	[cN]	226	
	Span length SL 2,5 %	[mm] 24,4		Uniformity ratio UR %	[mm]	40,8					
	Span length SL 50 %	[mm] 9,9		Short fiber content SFC % (N), <9m	im [%]	8,6		ANALYSIS REGULARITY			
	Uniformity ratio UR %	[mm] 40,8		Mean Length ML	[mm]	23,9		CV %	[%]	12,98	Thin -30%
	Short fiber content SFC % (N), <9mm			Upper High Mean Length UHM	[mm]	35,4		U %	[%]	9,51	Thin -40%
	Mean Length ML	[mm] 15,8		Uniformity Index UI %	[%]	67,5		Hairiness	(H)	4,94	Thin -50%
	Upper High Mean Length UHM	[mm] 22,5		Span length SL 66,7 %	[mm]	10,2		sH %	[sH]	0,94	Thin -60%
	Uniformity Index UI %	[%] 70,4%		CV %	[%]	45,2					· · · · · · · · · · · · · · · · · · ·
	Span length SL 66,7 %	[mm] 7,6					-	Thick +35%	[/km]	127	Neps + 140%
	CV %	[%] 40,7%						Thick +50%	[/km]	9	Neps + 200%
		1/01 -0,1/0						Thick +70%	[/km]	2	None + 290%

Ceti

Ceti

Ceti

Thick +70%

Thick +100%

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT

[/km]

[/km]

[/km]

[/km]

Neps + 280%

Neps + 400%

[/km]

[/km]

2

0

1427

69 1

2613 263

46

13

Update: 26/10/2022

Summarize of the Investigation - update April 2023

Bel&Bo

Feedstock	Delivery	Fraying	Blending and Carding	Yarn spinning	Final Solution
Pre-consumer	200 kg	187 kg 1 prototype	80 kg 8 prototypes	22 kg 43 prototypes	Х
Post-consumer	XXX kg	XXX kg 2 prototypes	10 kg 1 prototype	2 kg 1 prototype	1 yarn prototype 1 kg 1 knit Proof of concept 1 complete process data sheet for industrial transfer

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50%

Mechanical recycling

hnst

Recycled Denim

CETI

22/02/2023

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

hnst

Mechanical Recycling Process - Steps

Step 1

- Post-consumer feedstock of frayed Denim
- Carding of blend recycled content with Lyocell
- Yarn spinning with Nm 12,8

Step 2

- Pre-consumer analysis (sweaters)
- Carding of blend cotton recycled content with virgin cotton
- Yarn spinning with Nm 17 and 20

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

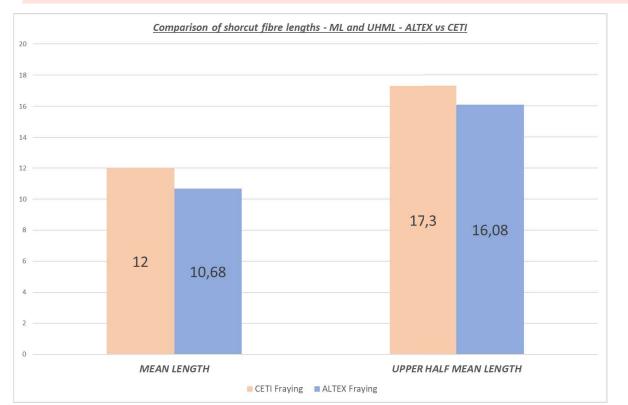
Post-Consumers investigation:

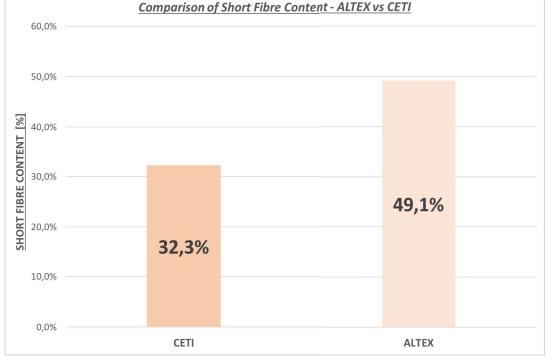
This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Fraying investigation:

Raw Materials	VALVAN Lot 1	VALVAN Lot 2	ALTEX Denim Fibres
UHM (mm)	17,9 mm	18,8 mm	16,9 mm
SFC (%)	32,3 %	34,2 %	54,0 %
Waste Ratio	16 %	19 %	Х

Same CETI fraying process → Same results


ALTEX feedstock less opened than CETI fibres

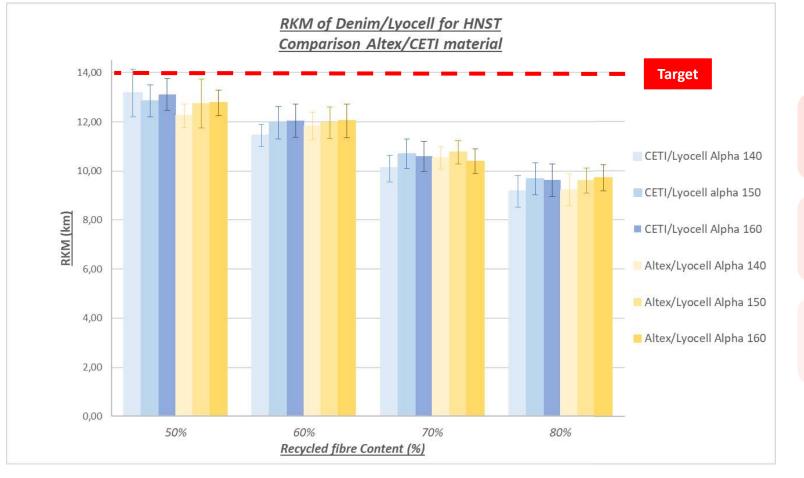


This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Better fraying quality on CETI facility

Higher fibre length → Better cohesion with virgin cotton

More opened fibres and yarns with CETI ability


This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT

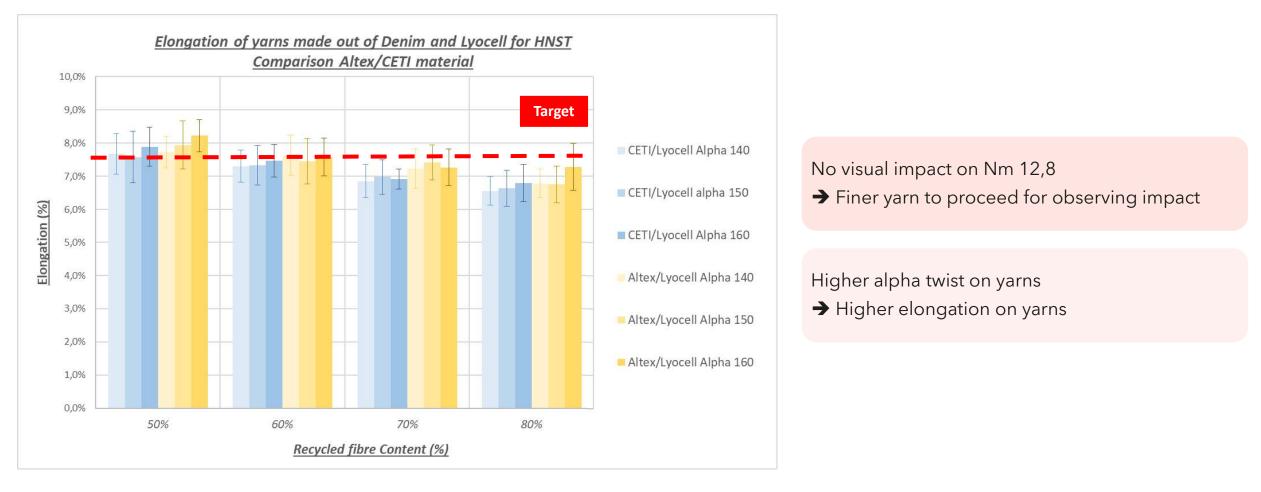
Step 1 - Mechanical Recycling Process

Comparison on recycled yarns :

No influence on Nm 12,8 for two different materials

Higher fibre length into the blend

→ Better cohesion with virgin lyocell


Higher alpha twist on yarns

→ **Recommended** for high recycled content

Comparison on recycled yarns :

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

CETI frayed fibres vs ALTEX frayed fibres

- Lower CV% → Better regularity
- CV% values are validated

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

hnst

Summarize of the Investigation - update April 2023

Feedstock	Delivery	Fraying	Blending and Carding	Yarn spinning	Final Solution
Denim from ALTEX	187	' kg	40 kg 4 prototypes	12 kg 12 prototypes	1 yarn prototype 1 knit Proof of concept 1 complete process data sheet for industrial transfer
Post-consumer Denim	200 kg 160 kg 10 prototypes		40 kg 4 prototypes	12 kg 12 prototypes	1 yarn prototype 1kg 1 knit Proof of concept 1 complete process data sheet for industrial transfer

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

hnst

Pre-Consumers investigation:

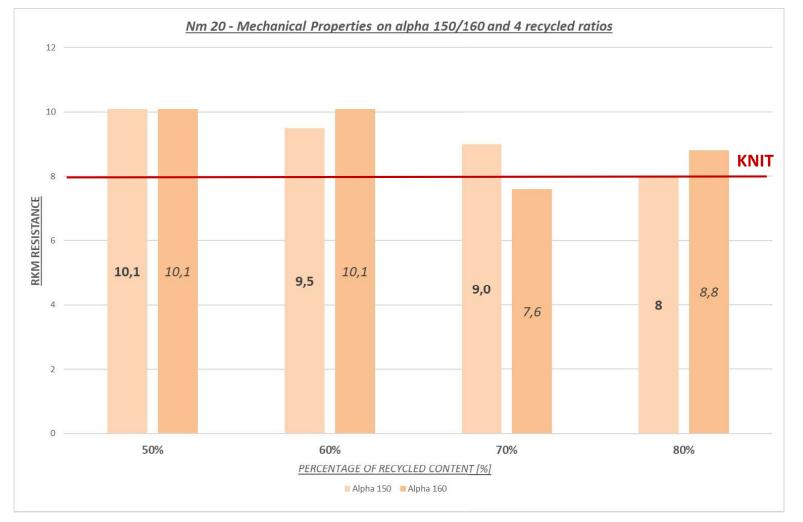
This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

hnst

Step 2 - Mechanical Recycling Process

Nm 17 - Mechanical Properties :

Adding 10% of recycled cotton fibres on yarn
→ Decrease of 10% in resistance


Alpha 160 for 70% of recycled fibres
→ More cohesion with recycled fibres
→ Short fibres → use of higher alpha twist

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Nm 20 - Mechanical Properties :

Finer rotor yarn (from Nm 17 to Nm 20) → Decrease of 10% in resistance

Alpha 160 for more than 70% of recycled fibres → More cohesion with recycled fibres

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical Recycling Process - Conclusions

Technical data sheets of the process conditions for the obtention of the yarn with 50% of recycled content

T FRAYING	G		Update: 26/10/2022	SCIRT.	CARD	MNG		Update: 26/10/2022	
PARTNER	hn	st		PARTNER		n	st		PARTNER
RAW MATERIAL	Denim	Cotton		RAW MAT	ERIAL				RAW MA
									Recycled
FRAYING PROCESS							Ratio		Lyocell 1,
8			r	Recycled D	enim Cotton	[%]	50%		
Size of cut raw materials	[mm]			Lyocell 1,3	dtex/38mm	[%]	50%		ROTOR S
Inlet Speed 1	[mpm]	1,0							Yarn Cou
Inlet Speed 2	[mpm]	1,1		OPENING	BLENDING CARDING				Alpha Tw
Loading Speed	[%]	6%							Yarn Twi
Sizing Ratio	[l/h]	70		Equalizer		[rpm]	230		Rotor
Cleaning roll Speed	[%]	80%		Vertical Co	onveyor	[mpm]	18		Rotor Sp
First Cadette Speed roll 1	[mpm]	1700		Breast Con	veyor	[rpm]	230		Opening
First Cadette Speed roll 2	[mpm]	2300		Feeding Cy	linder	[mpm]	5		Opening
Second Cadette Speed roll 1	[mpm]	2350		Opening C		[rpm]	2300		Adapter
Second Cadette Speed roll 2	[mpm]	2150		Ribbon We	eight	[g/m]	5,27		Torque
Fan Speed	[%]	40%		Feed Weig		[3->30]	740		Draft Rat
Outlet Speed 1	[mpm]	1,5		Manual Ca	And the second se	[Menu C]	268		Outlet so
Outlet Speed 2	[mpm]	1,6		Sliver Tens		[2->29]	1,8		CV %
Opening Cadette 1	[mm]	2		Outlet spe		[mpm]	40		
opening educite 1	[mm]	6			200	100 C 10	2.55		ANALYS
Opening Cadette 2	[mm]	8		ANALYSIS	FIBER LENGTH				Tenacity
opening educite 2	[mm]	8							RKM
				Span lengt	th SL 2,5 %	[mm]	35,7		Elongatio
ANALYSIS FIBER LENGTH				Span lengt		[mm]	15,3		Maximur
					ratio UR%	[mm]	43		
Span length SL 2,5 %	[mm]	20,9			content SFC % (N), <9mm	[%]	6,9		ANALYS
Span length SL 50 %	[mm]	8,2		Mean Leng		[mm]	26,7		CV %
Uniformity ratio UR %	[mm]	39,1			h Mean Length UHM	[mm]	37,2		U %
Short fiber content SFC % (N), <9n	nm [%]	34,2%			/ Index UI %	[%]	71,9		Hairines
Mean Length ML	[mm]	12			h SL 66,7 %	[mm]	11,1		sH %
Upper High Mean Length UHM	[mm]	18,8		CV %	10.57.550.070 1	[%]	44,4		31770
Uniformity Index UI %	[%]	63,5%		01.13		P. CI			Thick +3
Span length SL 66,7 %	[mm]	6,5							Thick +5
CV %	[%]	41,9%							Thick +7
									THICK TZ

Ceti

0	\sim		_
C.		$[\mathbf{R}']$)
J		I	1

1301

26

0

0

1612

22

2

[/km]

[/km]

[/km]

[/km]

[/km]

[/km]

[/km]

[/km]

hnst

Update: 26/10/2022

SPINNING

Ratio

50%

50%

12,8

160

1025

60000 D 174 DN

190

7,9

Thin -30%

Thin -40%

Thin-50%

Thin -60%

Neps + 140%

Neps + 200%

Neps + 280%

Neps + 400%

hnst

[%]

[%]

[Nm]

[α]

[T/m] T 640 BD (rpm)

[rpm] 8000

[U.I.]

[mpm] [%] 14,6%

Ceti

KSK4A TS 30 O/G

[cN/dtex] 1,28

[U.I.] 13,1 [%]

[cN] 1026

[%] 10,81

[%] 8,54

[sH] 0,97

[/km] 169

18

5

1

[H] 5,21

[/km]

[/km]

[/km]

Summarize of the Investigation - update April 2023 hist

Feedstock	Delivery	Fraying	Blending and Carding	Yarn spinning	Final Solution
Pre-consumer For sweater	187	7 kg	40 kg 8 prototypes	16 kg 32 prototypes	yarn prototype 1 knit Proof of concept 1 complete process data sheet for industrial transfer
Post-consumer For sweater	From partner Petit Bateau		40 kg 8 prototypes	16 kg 32 prototypes	1 yarn prototype 1 kg 1 knit Proof of concept 1 complete process data sheet for industrial transfer

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50%

Mechanical recycling

Recycled Wool/PET

22/02/2023

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Mechanical Recycling Process - Steps

Step 1

- Pre-consumer feedstock (PET/Wool/Elastane)
- Impact fraying conditions
- Carding of blend recycled content with PET
- Alternative of yarns : **nonwovens**

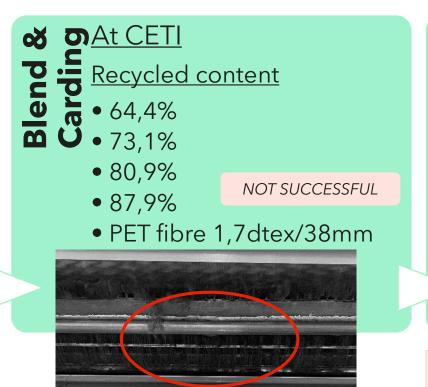
Step 2

- Post-consumer feedstock of PET and Wool
- Fraying with results from step 1
- Carding of blends
- Yarn spinning
- •Yarn count: Nm 29

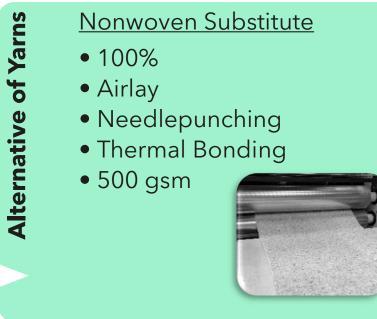
Pre-Consumers investigation:

<u>First path</u> (4 fraying drums)

- UHM: 17 mm
- SFC%: 42%


Fraying

<u>Second path</u> (+2 finer fraying drums)


- UHM: 21mm
- SFC%: 36%

Feedstock yarn composition → twisted yarn good for abrasion resistance but very difficult to fray and separate the fibres from yarn

→ High waste ratio and not enough opening of frayed fibres (>25%)

The high content of frayed fibres and specifically wool into the blend creates carding selection and high loss ratio (>30%)

The Wool/Polyester feedstock does not fulfill the process and rentability criteria for a yarn spinning use.

The type of yarn (twisted) and blend improves the textile durability and not recyclability for yarn, a nonwoven application is therefore more adapted (padding).

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

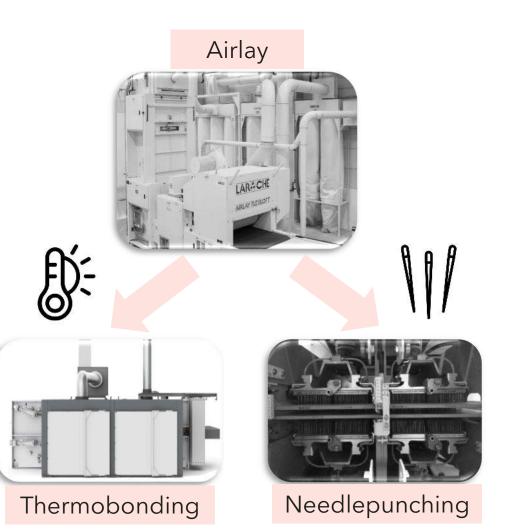
SCIRT.

్

X A N D R E S

Mechanical Recycling Process

X A N D R E S BELGIUM


Pre-Consumers :

- Recycled fibres • PET/Wool/EA
- PET/CoPET
- 2,2 dtex
- 32 mm
- PET
- •6,7 dtex
- •60 mm

Airlaying

- Ratio 1 • 100% recycled
- Ratio 2
- 85% recycled
- 15% PET/CoPET
- Ratio 3
- 85% recycled
- 15% PET

- Web Bonding
- 500 gsm
- Thermal bonding
- Needlepunching

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Pre-Consumers :

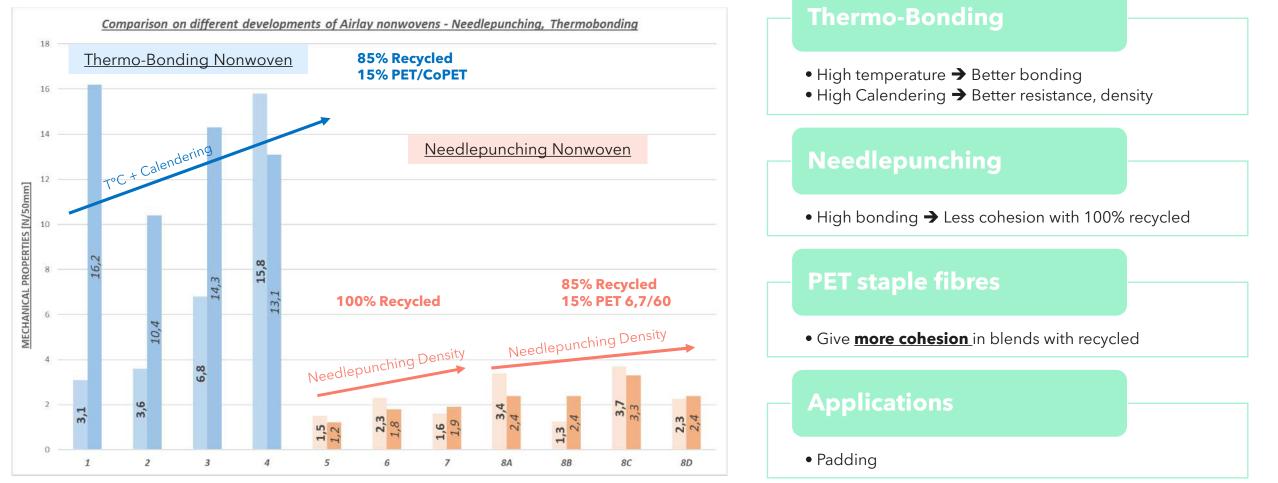
Sample N°	Recycled Fibres	PET/CoPET 2,2/32	PET 6,7/60	Web Bonding	BW [gsm]	Thickness [mm]	MD Strength	CD Strength
1	85%		15%	Thermal	507	14,3	3,1	16,2
2	85%		15%	Thermal	496	13,3	3,6	10,4
3	85%		15%	Thermal	501	13,6	6,8	14,3
4	85%		15%	Thermal	490	7,0	15,8	13,1
5	100%			Needlepunching	591	10,7	1,5	1,2
6	100%			Needlepunching	514	9,7	2,3	1,8
7	100%			Needlepunching	448	9,0	1,6	1,9
8A	85%	15%		Needlepunching	478	12,5	3,4	2,4
8B	85%	15%		Needlepunching	491	11,4	1,3	2,4
8C	85%	15%		Needlepunching	493	9,1	3,7	3,3
8D	85%	15%		Needlepunching	473	10,3	2,3	2,4

**** * * ***

Pre-Consumers materials are suitable for nonwoven process

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

٠


٠

Thermal bonding → **Rigid** nonwovens

Mecanical bonding → **Soft** nonwovens

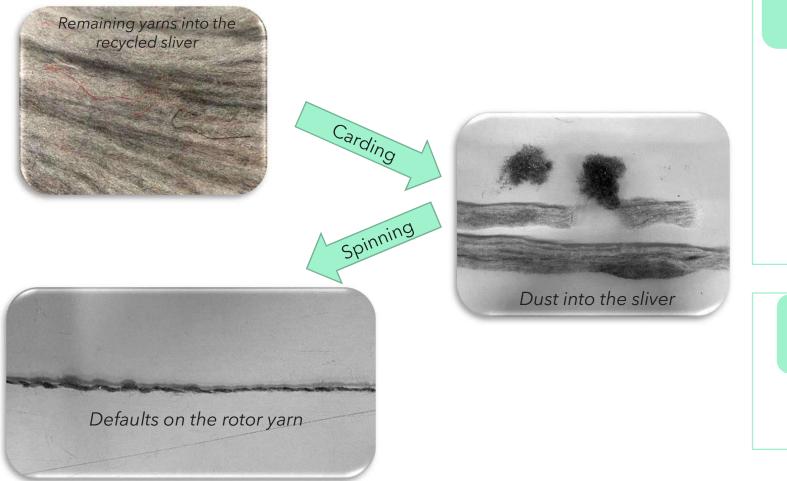
Pre-Consumers :

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT

Step 2 - Mechanical Recycling Process

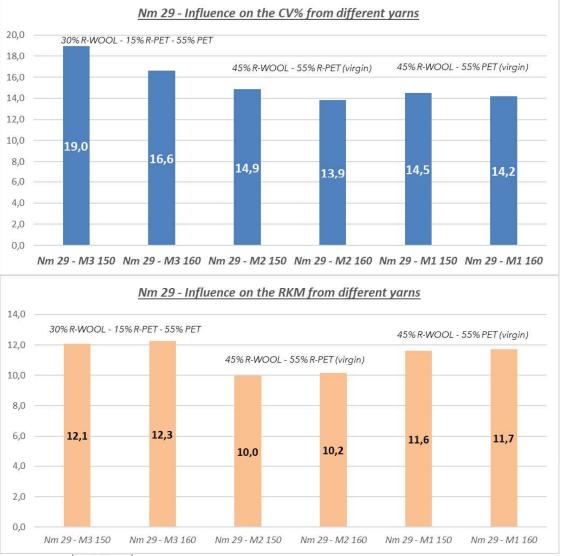
Post-Consumers investigation:


The content of frayed wool can not exceed 30%, due to the fact the fibre is coarser than Polyester ones and contaminate the carding sliver and yarn.

The polyester feedstock is not a fibre feedstock but contains textiles made of filaments, the frayed filaments are longer than fibres but filaments are thinner and more fragile than a polyester fibre, creating more loss during carding process and therefore yarn spinning process.

Post-Consumers investigation:

Yarn Process


- Sliver defaults from wool fibres (>30%)
- Opening roll unable to remove wool impurities
- Fibres spinning difficulties
- Rotor Speed of 70 000 rpm → More cohesion
- B 20 DN opening roll \rightarrow Enhance breaking of sliver

Alternative

• 30% R-Wool - 70% PET

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Alpha Twist

- High value → High resistance
- 160 is better to apply on recycled

Resistance

PET filaments → More strength on yarns

Regularity

- Tri-component yarns are not suitable
- Alpha 160 → More regularity

Alternative

• 30% R-Wool / 70% Virgin PET

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

్×

X A N D R E S

Summarize of the Investigation - update April 2023

Feedstock	Delivery	Fraying	Blending and Carding	Yarn spinning	Final Solution
Pre-consumer	200 kg	140 kg 1 prototype	40 kg 4 prototypes	Х	Х
Post-consumer	200 kg wool 200 kg Polyester	166 & 182 kg 2 prototypes	30 kg 3 prototypes	6 kg 6 prototypes	

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

T2.2.3 - Rotor Spinning yarns data from Post-Consumers for industrialization

Brand concerned	PETIT BATEAU	BEL & BO	HNST	XANDRES
Recycled Fibres	50% Cotton	50% Viscose	70% Denim	30% Wool – 15% PET
Virgin Fibres	50% Cotton	50% Lyocell 1,3/38	30% Lyocell 1,3/38	55% PET
Yarn Count	Nm 40	Nm 47	Nm 12,8	Nm 29
Yarn Technology	Rotor Spinning	Rotor Spinning	Rotor Spinning	Rotor Spinning
Elongation	5,6%	7,9%	7%	14,1%
Average force [cN]	239	226	810	414
Average Force CV [%]	6,8%	10,3%	5,8%	11,3%
RKM	9,7	10,5	10,7	12,3
U [%]	9,9%	9,5%	8%	11,3%
CVm [%]	12,5%	12,9%	10,5%	16,6%
Thinness [/km]	4	9	13	281
Thickness [/km]	8	1	5	494
Neps 200% [/km]	223	263	0	144
Hairiness [%]	4,82	4,94	5,49	5,99
Quantity [m]	15 000	15 000	4 000	5 000

The textile to textile recycling investigation through different feedstocks confirms the following:

For a single material feedstock, the 50% frayed content is possible by adapting the process – depends of the final yarn specifications, the textile process needs to be adapted (knitting instead of weaving or weaving possible by using the recycled yarn in weft)

For a 2 material feedstock such as wool and polyester, types of fibres have a big impact on the process and yarns specification – final content can not follow the original one.

T2.2.3 - Rotor Spinning yarns data - PETIT BATEAU Industrialization

PARTNER

	, Bu	
RAW MATERIAL		Ratio
Recycled Cotton	[%]	50%
Cotton GOTS 31mm - Turkey	[%]	50%

ROTOR SPINNING PROCESS

Yarn Count	[Nm]	40
Alpha Twist	[α]	160
Yarn Twist	[T/m]	1025
Rotor	T 640 BD	
Rotor Speed	[rpm]	60000
Opening roll	D 174 DN	
Opening roll Speed	[rpm]	8000
Adapter Tool	KS K4 A	
Torque	TS 30 O/G	
Draft Ratio	[U.I.]	190
Outlet speed	[mpm]	59,3
CV %	[%]	14,6%
Quantity	[m]	15000

ANALYSIS STRENGTH

Tenacity	[cN/dtex]	0,96
RKM	[U.I.]	9,7
Elongation	[%]	5,6
Maximum Force	[cN]	239

ANALYSIS REGULARITY

CV %	[%]	12,5
U %	[%]	9,9
Hairiness	[H]	4,82
sH %	[sH]	0,91

Thick +35%	[/km]	137
Thick +50%	[/km]	8
Thick +70%	[/km]	2
Thick +100%	[/km]	0

Thin -30%	[/km]	1936
Thin -40%	[/km]	119
Thin -50%	[/km]	4
Thin -60%	[/km]	0

Neps + 140%	[/km]	2637
Neps + 200%	[/km]	223
Neps + 280%	[/km]	21
Neps + 400%	[/km]	3

T2.2.3 - Rotor Spinning yarns data - BEL & BO Industrialization

PARTNER

Bel&Bo

RAW MATERIAL		Ratio
Recycled Viscose	[%]	50%
Lyocell 1,3dtex/38mm	[%]	50%

ROTOR SPINNING PROCESS

Yarn Count	[Nm]	47
Alpha Twist	[α]	160
Yarn Twist	[T/m]	1097
Rotor	T 640 BD	
Rotor Speed	[rpm]	60000
Opening roll	B 20 DN	
Opening roll Speed	[rpm]	8000
Adapter Tool	KS K4 A	
Torque	TS 30 O/G	
Draft Ratio	[U.I.]	240
Outlet speed	[mpm]	54,7
CV %	[%]	12,5%
Quantity	[m]	15000

ANALYSIS STRENGTH

Tenacity	[cN/dtex]	1,0
RKM	[U.I.]	10,5
Elongation	[%]	7,9
Maximum Force	[cN]	226

ANALYSIS REGULARITY

CV %	[%]	12,98
U %	[%]	9,51
Hairiness	[H]	4,94
sH %	[sH]	0,94

Thick +35%	[/km]	127
Thick +50%	[/km]	9
Thick +70%	[/km]	2
Thick +100%	[/km]	0

Thin -30%	[/km]	1427
Thin -40%	[/km]	69
Thin -50%	[/km]	1
Thin -60%	[/km]	0

Neps + 140%	[/km]	2613
Neps + 200%	[/km]	263
Neps + 280%	[/km]	46
Neps + 400%	[/km]	13

T2.2.3 - Rotor Spinning yarns data - HNST Industrialization

PARTNER

hnst

RAW MATERIAL	Ratio		
Recycled Denim Cotton	[%]	70%	
Lyocell 1,3dtex/38mm	[%]	30%	

ANALYSIS STRENGTH

ROTOR SPINNING PROCESS

Yarn Count	[Nm]	12,8
Alpha Twist	[α] 150	
Yarn Twist	[T/m]	1025
Rotor	T 640 BD	
Rotor Speed	[rpm]	60000
Opening roll	D 174 DN	
Opening roll Speed	[rpm] 80	
Adapter Tool	KS K4 A	
Torque	TS 30 O/G	
Draft Ratio	[U.I.]	190
Outlet speed	[mpm]	104,8
CV %	[%]	12,5%
Quantity	[m]	4000

Tenacity	[cN/dtex]	1,05
RKM	[U.I.]	10,7
Elongation	[%]	7
Maximum Force	[cN]	810

ANALYSIS REGULARITY

Thick +35%

Thick +50%

Thick +70%

Thick +100%

CV %	[%]	10,54	Thin -30%	[/km]	909
U %	[%]	8,01	Thin -40%	[/km]	14
Hairiness	[H]	5,49	Thin -50%	[/km]	0
sH %	[sH]	1,08	Thin -60%	[/km]	0

[/km]	142	Neps + 140%	[/km]
[/km]	13	Neps + 200%	[/km]
[/km]	5	Neps + 280%	[/km]
[/km]	0	Neps + 400%	[/km]

1221

14

1

0

T2.2.3 - Rotor Spinning yarns data - XANDRES Industrialization

PARTNER

XANDRES

BELGIUM

RAW MATERIAL

		Ratio
Recycled Wool	[%]	30%
Recycled PET	[%]	15%
PET 1,7dtex/38mm	[%]	55%

ROTOR SPINNING PROCESS

Yarn Count	[Nm]	29
Alpha Twist	[α]	160
Yarn Twist	[T/m]	862
Rotor	т 646	5 BD
Rotor Speed	[rpm]	70000
Opening roll	B 20	DN
Opening roll Speed	[rpm] 800	
Adapter Tool	KS K4 A	
Torque	TS 30	O/W
Draft Ratio	[U.I.]	155
Outlet speed	[mpm]	81,2
CV %	[%]	17,5%
Quantity	[m]	5000

ANALYSIS STRENGTH

Tenacity	[cN/dtex]	1,2
RKM	[U.I.]	12,3
Elongation	[%]	14,1
Maximum Force	[cN]	414

ANALYSIS REGULARITY

CV %	[%]	16,6
U %	[%]	11,3
Hairiness	[H]	5,99
sH %	[sH]	1,09

Thin -30%	[/km]	5983
Thin -40%	[/km]	1313
Thin -50%	[/km]	281
Thin -60%	[/km]	54

Thick +35%	[/km]	1836	Neps + 140%
Thick +50%	[/km]	494	Neps + 200%
Thick +70%	[/km]	143	Neps + 280%
Thick +100%	[/km]	2	Neps + 400%

Neps + 140%	[/km]	6238
Neps + 200%	[/km]	2529
Neps + 280%	[/km]	756
Neps + 400%	[/km]	144

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Task 2.2 : Increased value SCIRT recycling of clothing and spinning **D.2.1: Lab-scale (0,1 - 1 kg/batch)** samples for (re-)spinning trials after (bio)chemical recycling of multi-material fibre/textile blends Sustainable

CETI

November 2022

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

MACHINE and MATERIALS TESTED

MATERIALS TESTED

- 1. PET separated from **WOOL**
- 2. PET separated from **ELASTANE**
- 3. PET separated from **WOOL AND ELASTANE**

SAMPLE EXPANSION

SAMPLE: MILLING

Sustainable Innovation Institute

CONCLUSIONS

PET from Wool

 Although two tests were conducted, unfortunately, data was not collected from low sensor sensitivity. However, sample helped CETI team to calibrate machine for further testing

PET from Elastane

• Elastic recovery noticed. This suggests that elastane has not been fully removed. Further discussions with TU WIEN should take place

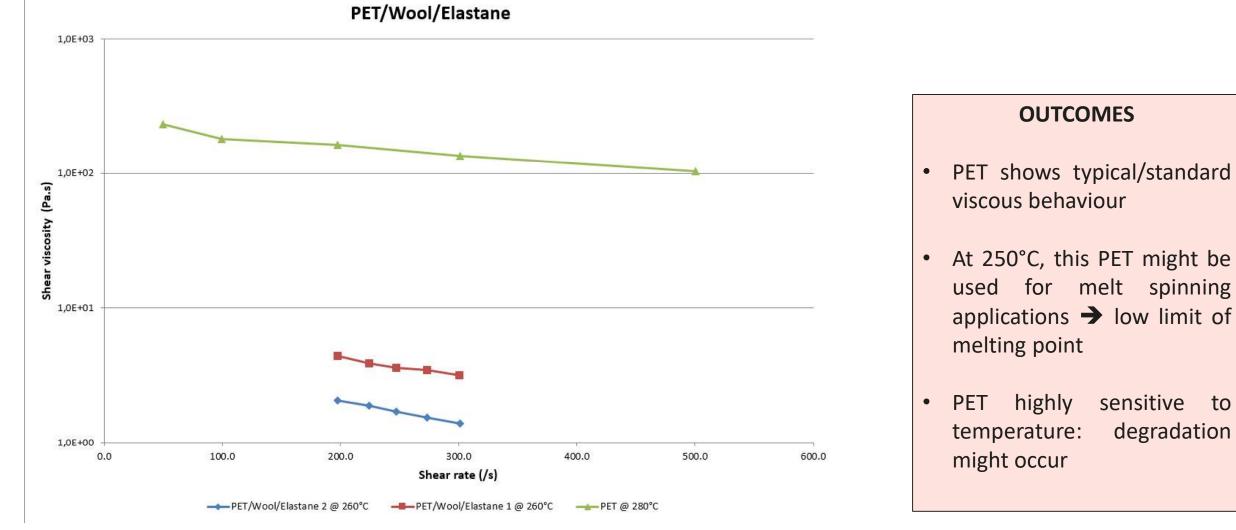
PET from Elastane and Wool

• Sample shows viscoelasticity that makes it suitable for use in melt spinning applications


This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

RHEOLOGY: PET from ELASTANE

Sustainable Innovation Institute



**** * * ***

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

PET from Elastane and Wool

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Task 2.2 : Increased value recycling of clothing and spinning

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50%

Thermo-mechanical recycling

CETI

November 2022

Thermo-mechanical Recycling Process - Plan

Situation of the recycling process investigation

Thermomechanical recycling process and primary material scientific approach

Thermomechanical recycling process on pre-consumer NEGOMBO

- Thermo-mechanical process and Results
- Rheology
- Melt-spinning Process and Results

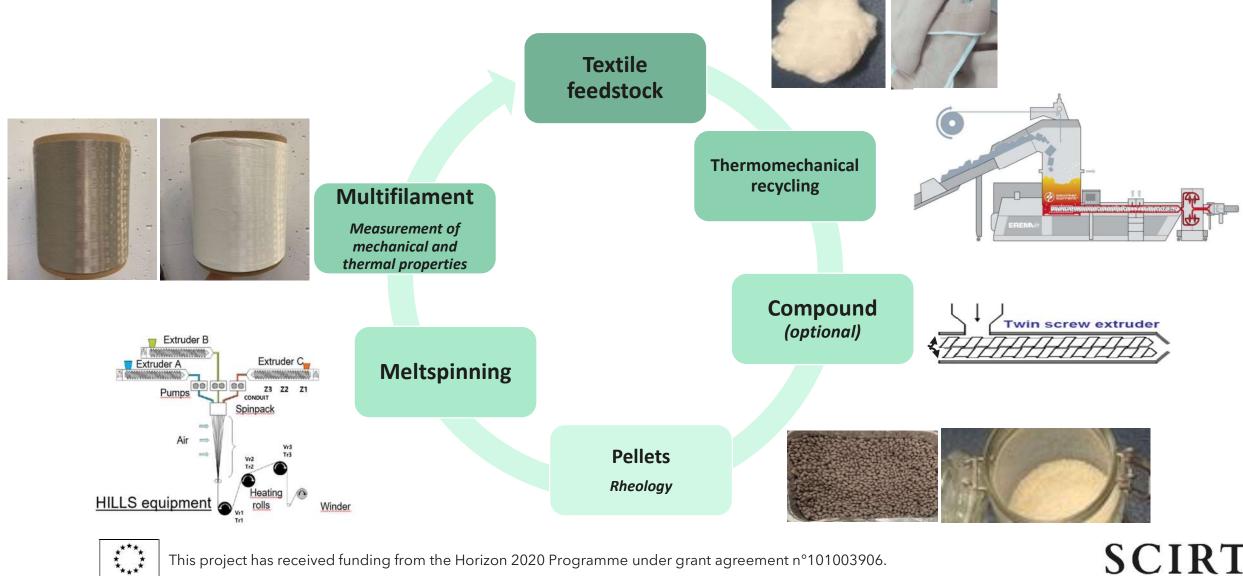
Thermomechanical recycling on post-consumer polyster

- Thermo-mechanical process and Results
- Rheology
- Melt-spinning Process and Results

SCIRT.

Your CETI team

Technicians team: Charles, Ludovic



Thermo-Mechanical recycling process - Situation

Research topics	Status	To realize		
Scientific approach on thermo- mechanical recycling	Pre-consumer on different feedstocks investigation Thermo-mechanical recycling process methodology	PET degradation analysis through the pellet to filament process		
Preconsumer Negombo	Feedstock delivery mid-May 2022			
	Thermomechanical recycling – July 2022	Negombo melt spinning investigation of blends		
	Melt spinning: Specific spinpack delivery (July 2022) 100% r-Negombo in 75 deniers/36 filaments - July 2022	with virgin PET		
Negombo 2 (with accessories)	Waiting for feedstock	Complete thermo-mechanical process		
Patmos	Waiting for feedstock	Complete thermo-mechanical process		

Experimental Program

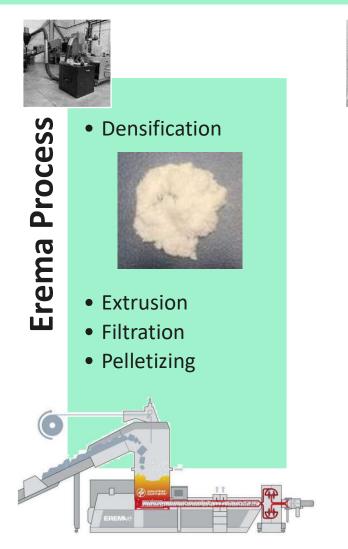
This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

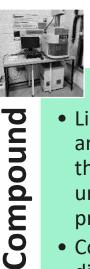
D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50% Thermo-mechanical recycling Primary materials - Scientific approach

CETI

November 2022

Thermo-mechanical investigation with preconsumers materials - Investigation plan




Pre-consumer
 PET fibres

Pre-consumer
 PET fabrics (knits)

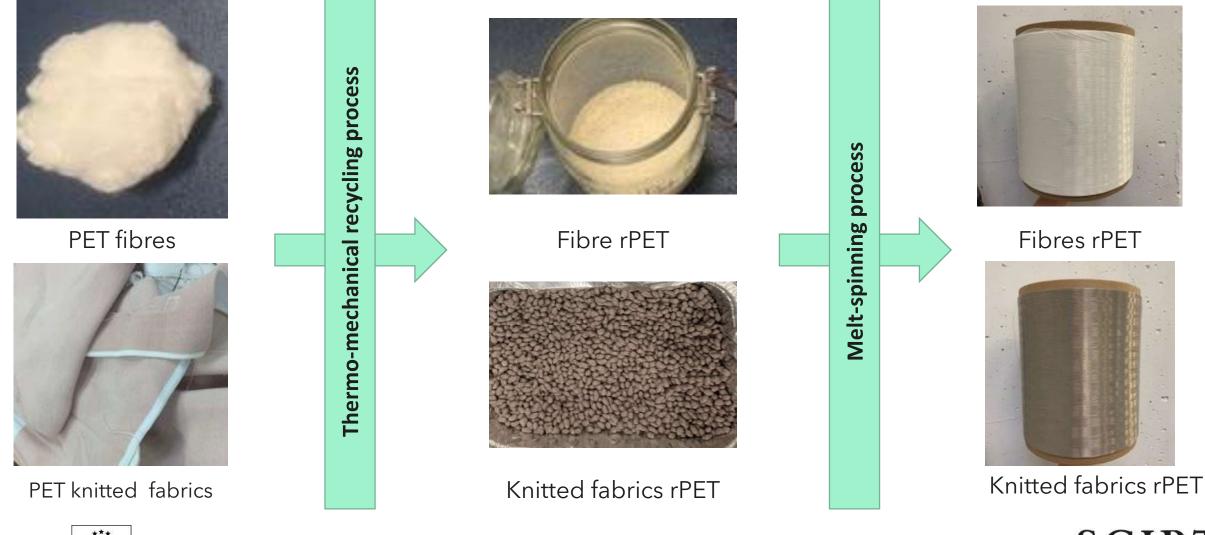
Q

Rheology

- Liquid viscosity and behavior of the recycled resin under different pressures
- Comparison with different virgin resin
- Blend of r-PET & PET through compound

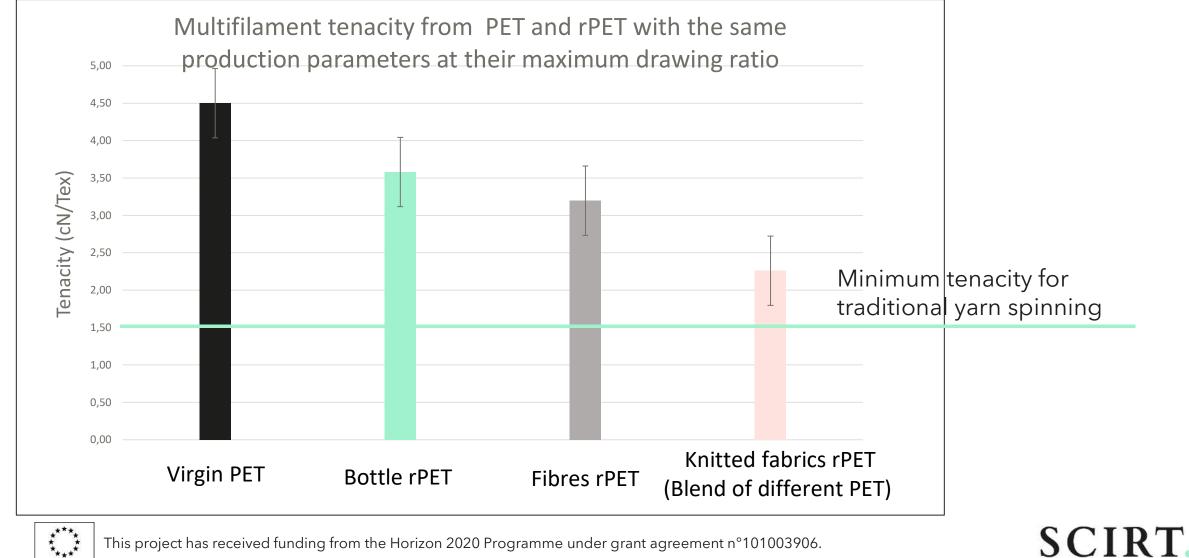
spinning

Melt


- Extrusion defined by rheology results
- Investigation and comparison through:
 - Capillary
 throughput
 - Filament drawing

• ...

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.


Thermo-mechanical investigation with preconsumers materials - Results

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Thermo-mechanical investigation with preconsumers materials - Results

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50% Thermo-mechanical recycling Negombo

CETI

November 2022

Thermo-mechanical Process - NEGOMBO

DECATHLON

Step 1

- •Pre-consumer feedstock Negombo
- •Thermo-mechanical recycling
- Rheology
- •Compound with virgin PET
- •Recycling content: 30% & 70%
- •Melt-spinning process
- •50d/72 DTY
- •75d/72 DTY
- •75d/36 DTY

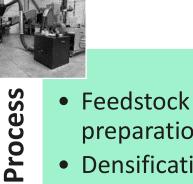
Step 2

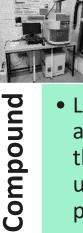
- •Post-consumer feedstock Negombo
- •Thermo-mechanical recycling
- Rheology
- •Compound with virgin PET
- •Recycling content: step 1
- •Melt-spinning process
- •50d/72 DTY
- •75d/72 DTY
- •75d/36 DTY

Step 3

• PATMOS investigation

Thermo-mechanical Process - NEGOMBO


DEC4THLO


Pre-consumer

Raw Materials

- preparation
- Densification
- Extrusion
- Filtration
- Pelletizing

Rheology &

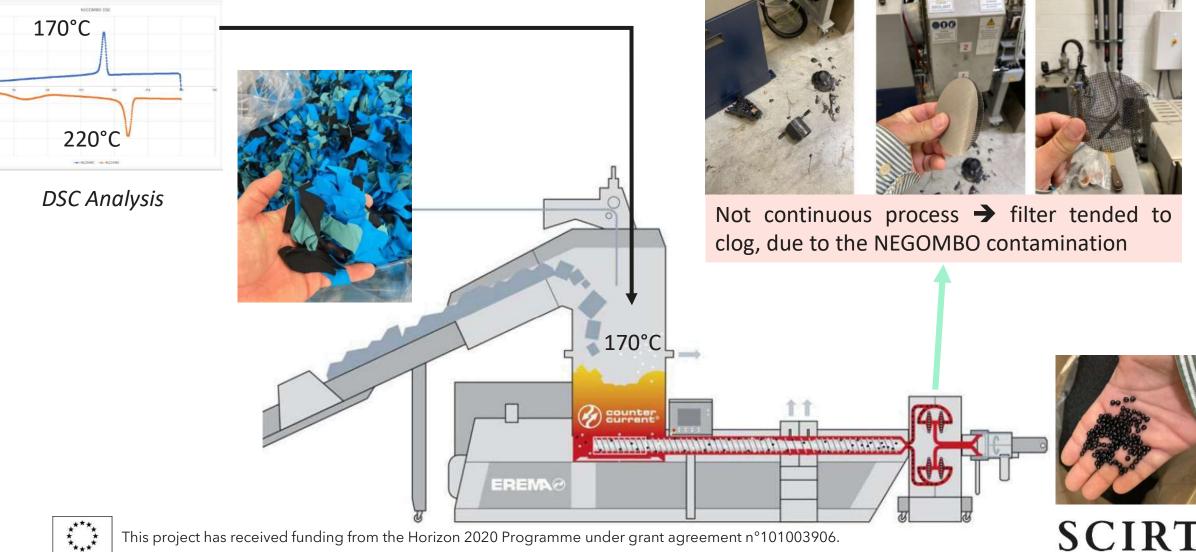
- Liquid viscosity and behavior of the recycled resin under different pressures
- Compound with recycled content:
- 100%
- 70%
- 30%

spinning

Melt

- Process thankss to scientific approach
- Multi-filaments:
 - 85-90 dtex [50d/72 DTY]
- 130-135 dtex [75d/72]
- 130-135 dtex [75d/36]
- Specifications:
 - Elongation: 120 -140%
 - Tenacity:1.94-2.21 cN/dtex

Conclusions

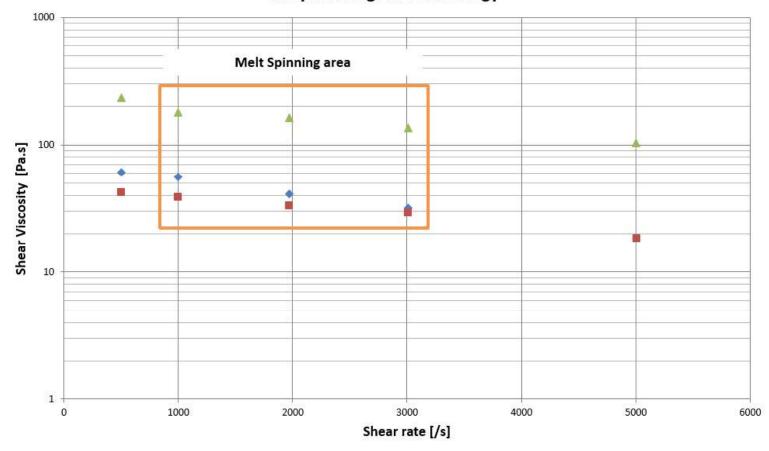

- Negombo thermomechanical is possible but problem of contamination (filtration clogging)
- R-Negombo suitable for melt spinning process thanks to positive rheology behavior
- 100% r-Negombo extrusion and filament spinning are stable

Erema

Multi-filament for final application 75d/36 DTY under the specifications and not possible to texturizing.

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

NEGOMBO - Thermo-mechanical recycling


This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

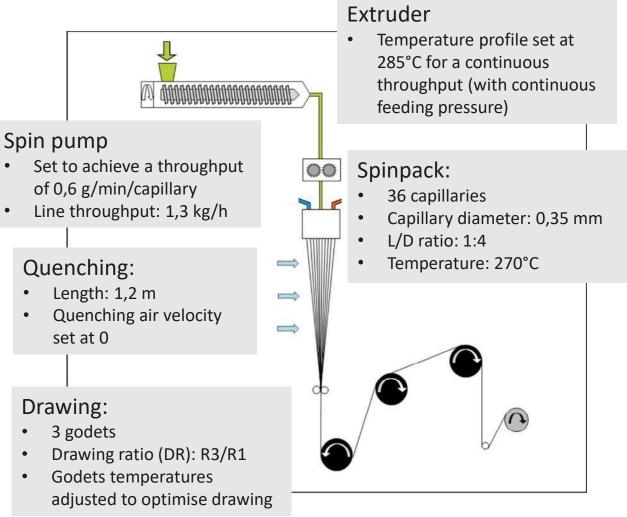
DEC4THLON

NEGOMBO - Rheology

Recycled Negombo Rheology

R-Negombo

 Good viscosity at 270°C


R-Negombo vs PET

 Less viscous means sheared macromolecules due to recycling

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

NEGOMBO - Melt-Spinning - Process investigation

Recycled Negombo at 100%

Final product: 75den/36 filaments DTY means 130-135 dtex/36 filaments POY

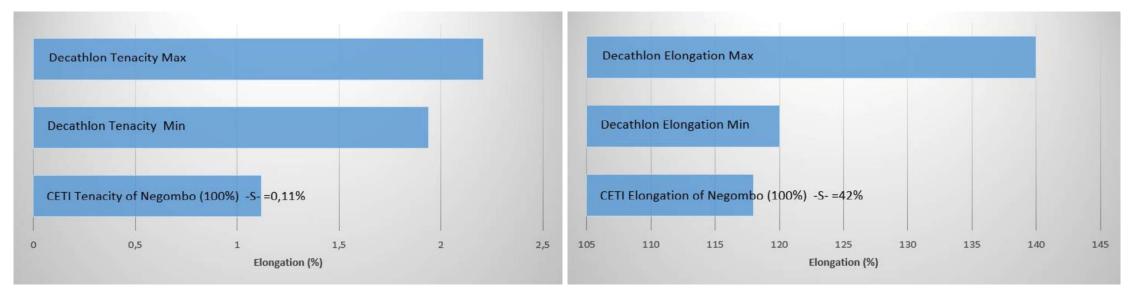
	R1	R2	R3	DR	R1	R2	R3	Multi
								filament
	[m/min]				[°C]			[dtex]
1	1 480	1 490	1 500	1.00	70	75	37	140
2	1 000	1 510	1 520	1.49	70	75	37	149
3	750	1 510	1 520	1.98	70	75	37	140
4	750	1 610	1 620	2.13	70	75	37	133

Melt spinning process

• Extrusion and filament spinning are stable

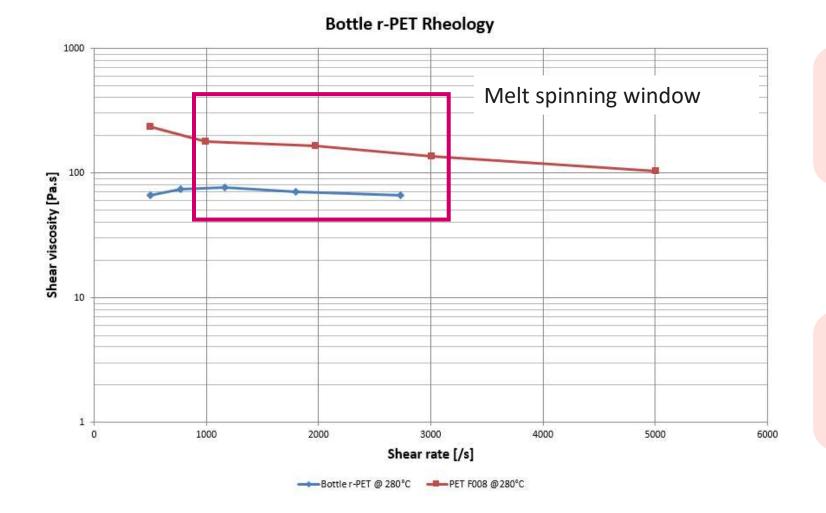
Filament drawing investigation

• The conditions #3 are the best



This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

NEGOMBO - Melt-Spinning - Results


	R1	R2	R3	DR	R1	R2	R3	Multi filament	Tenacity	Elongation
		[m/min]				[°C]		[dtex]	[cN/dtex]	[%]
1	1 480	1 490	1 500	1.00	70	75	37	140	0,92	205
2	1 000	1 510	1 520	1.49	70	75	37	149	1,03	161
3	750	1 510	1 520	1.98	70	75	37	140	1,12	118
4	750	1 610	1 620	2.13	70	75	37	133	1,19	111

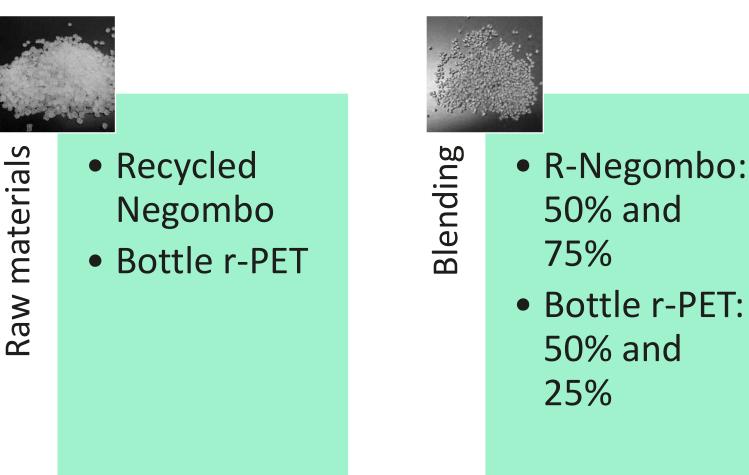
This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

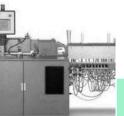
Bottle r-PET vs PET Rheology

Bottle r-PET less visquous than standard PET

- Recycled product with higher shearing
- Lower possible final mechanical proeperties

Bottle r-PET has good viscosity for filament application


 Resin is still visquous to be processed through melt spinning process



SCIRT.

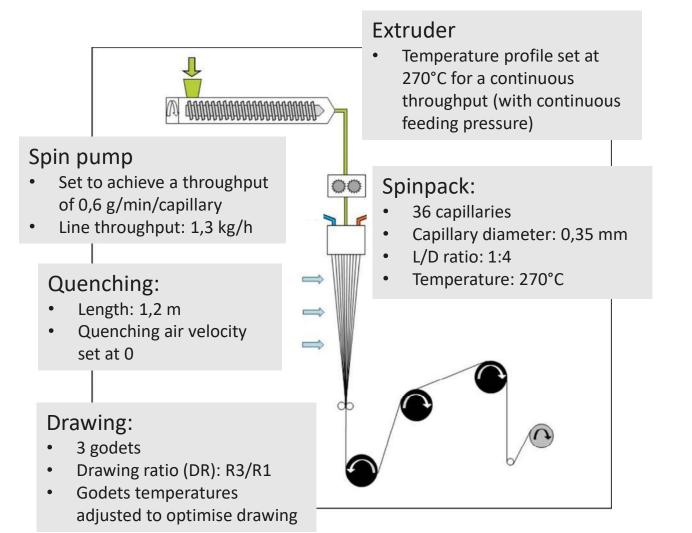
DEC4THLC

NEGOMBO - Polymers blending through compounding

Compound extrusion

Profile:
 260°C

- Throughput: 20 kg/h
- Torque: 63%


This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

DECATHLON

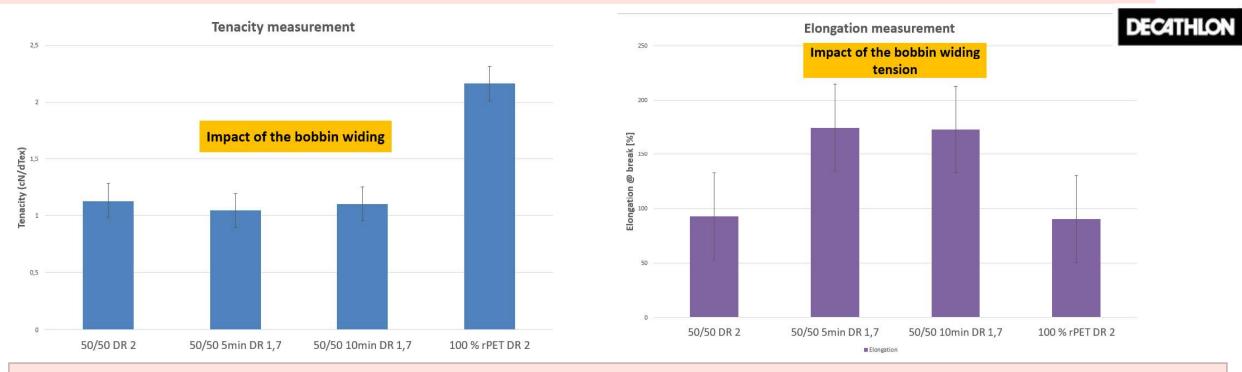
NEGOMBO - Melt-Spinning - Process investigation Step 2

DEC4THLON

Process is not reproductible

 Comparison with previous trials

 difficulties to apply exactly same parameters settings


R-Negombo viscosity variations

 Despite of equivalent process conditions, the final viscosity of the r-Negombo ensures variations of results

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

NEGOMBO - Melt-Spinning - Process investigation Step 2

- Bottle r-PET resin fulfills the requirements of final mechanical properties (>2 cN/dtex, 120%).
- The r-Negombo content reduces by 2 the final tenacity.
- Drawing ratio (DR) and godet temperatures are the key to achieve an high filament elongation.

→ Coloured r-Negombo and consequent potential contamination can impact negatively the final filament mechanical properties. By investigating with a post-production Negombo without treatment (dying and finishing), a better understanding of the recycling process can be achieved

NEGOMBO - Thermo-mechanical recycling - further steps

High content of r-Negombo: min. 50% Compounding Blend with 2 different virgin • PET (IV: 0,75 & IV: 0,64 → Impact of the blend and final viscosity Thermomechanical Melt Spinning for a final multi-filament of 130-140 treatment Negombo greige dtex (36 filaments) (without dying → Impact of the blend and process conditions on and finishing) filament tenacity and elongation Rheology analysis **Melt-spinning investigation Different Blend** Capillary diam. Shape Mono-component **Recycled material content** 0,35 and 0,60 mm **Bi-component** from 50% to 100% (Core/Sheath)

Impact of the resin shearing

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

SCIRT.

Better configuration to

achieve high recycled

content

Impact of the blend viscosity

D2.2: Prototypes of yarn from task 2.1 with a recycled content > 50% Thermo-mechanical recycling PET Post-consumer feedstock

CETI

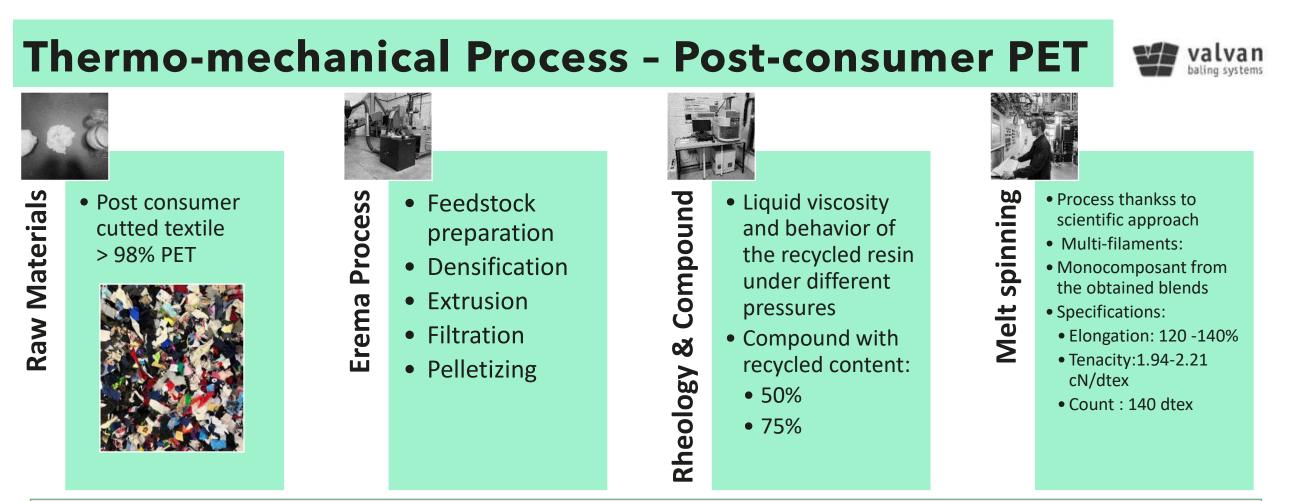
November 2022

Thermo-mechanical Process – Post-consumer PET

Step 1

- •Post-consumer feedstock
- •Thermo-mechanical recycling
- Rheology
- •Compound with virgin PET
- •Recycling content: 50% & 75%

Step 2


Post-consumer feedstockMelt-spinning process with different

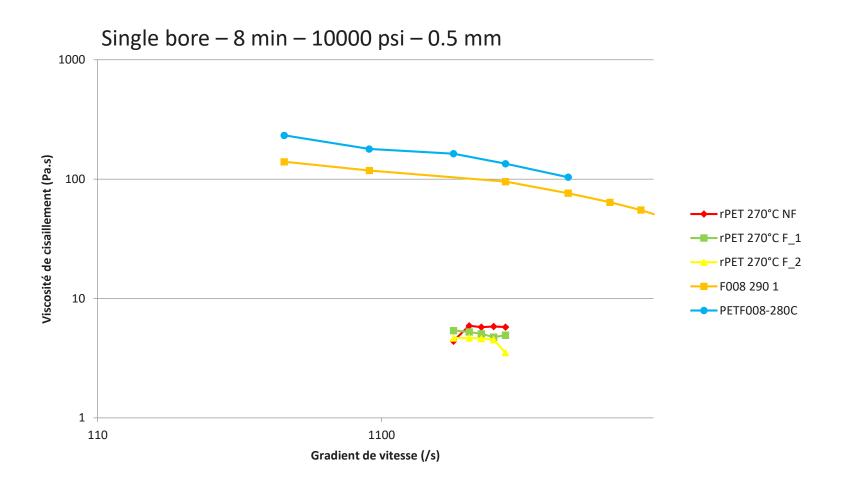
•Melt-spinning process with differen blends with two kind of virgin PET

Step 3

- Post-consumer feedstock
- Melt-spinning process with sheath/core cross section

Conclusions

Post-consumer thermomechanical is possible but problem of contamination (filtration clogging : filter changement each 30 min)


100% Post-consumer is not suitable for melt spinning process due to negative rheology behavior

Extrusion and filament spinning are not stable

Multi-filament for final application 75d/36 DTY under the specifications and not possible for texturizing.

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

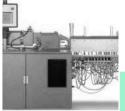
Rheology of the rPET obtain

- Very low viscosity (270°C is the lower temperature possible)
- Blending are mandatory to a good processing
- The unfiltered material have a lower viscosity due to fewer contamination

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

POSTCONSUMER - Polymers blending through compounding

Blending

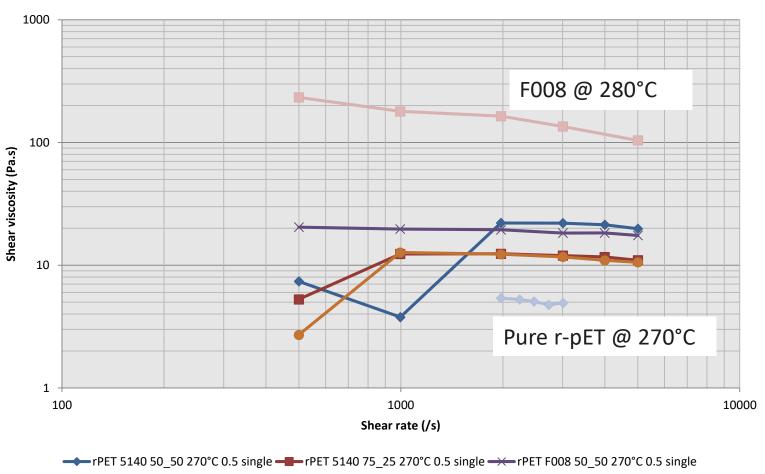


- Raw materials
- R-Post consumer cutted textile > 98% PET pellets
- Virgin PET F008
- Virgin PET 5140
 → These two references don't have the same macromolecule characteristic, they will not interract the same way with the recycled material

- R-Post consumer: 50% and 75%
- Virgin PET F008
 <u>and</u> 5140: 50%

 and 25%

- Compound extrusion
- Profile:
 260°C
 - Throughput: 20 kg/h
 - Torque: 63%



This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

POSTCONSUMER - Rheology of the rPET blends

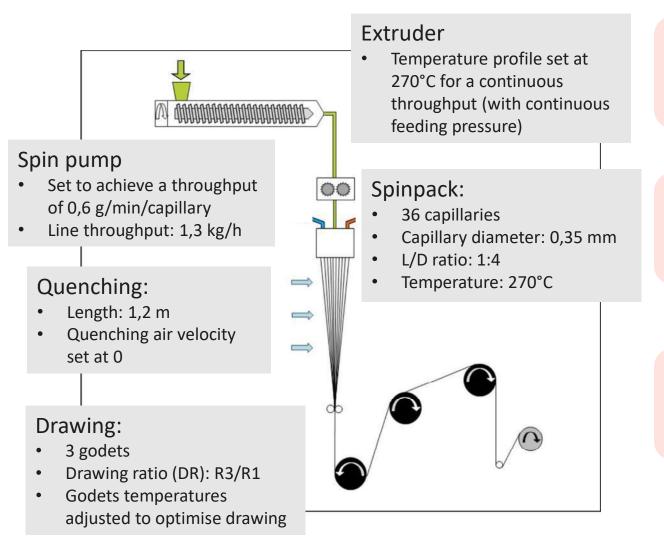
Single bore – 8 min – 10000 psi – 0.5 mm

Blends improve viscosity behaviour

- Still below standard F008
- Viscosity seems to be under melt spinning standards

Blends 50/50 with RT 5140 and F008 seems to be similar blend

- Blends viscosity are closer to pure r-PET than virgin material
- The impact of IV of virgin material is under expectations



This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

-----F008 280°C

POSTCONSUMER - Melt-Spinning - Process investigation Step 2

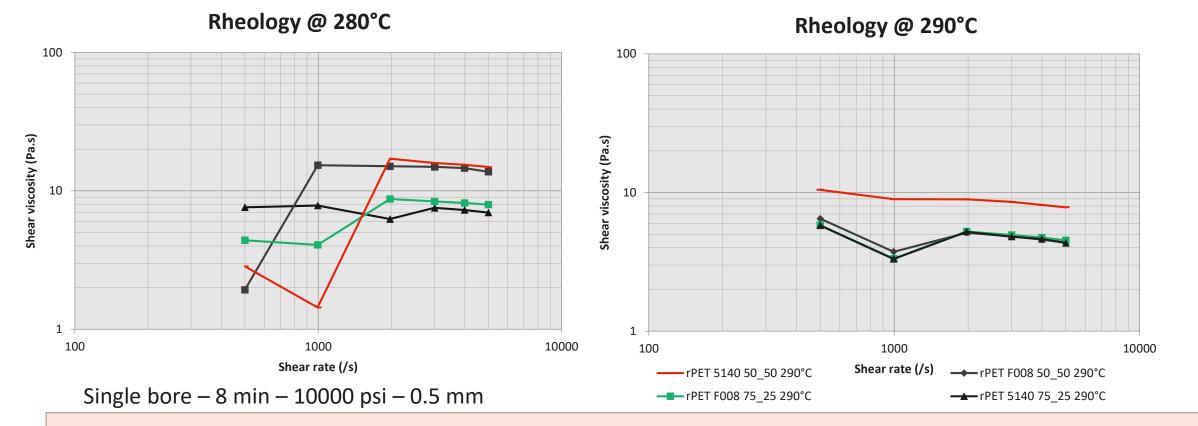
Process is not reproductible

- Difficulties to apply exactly same parameters settings a bobine to another

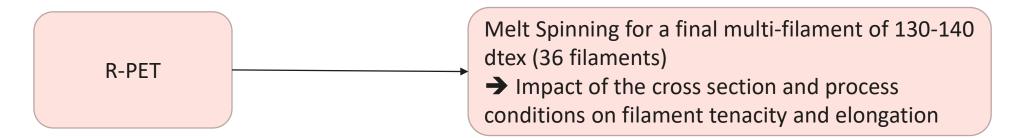
Extrusion conditions change

 To adapt a good spin-ability of the resins blends, extrusion profile needs to be increased to 280 and then 290°C

High contamination level



• Contamination clogs the spinneret capillary and filter decreasing the flow of material causing filament breaks


POSTCONSUMER - Thorough Rheology of the rPET blends 🐲 valvan

- During the melt spinning trial, extrusion profil had to be increased to improve the stability and the good processing of the material, more rheology analysis have been done with higher temperature
- PET 5140 seems to have a positive impact on the recycled material, futher work will include more investigation with this combination

This project has received funding from the Horizon 2020 Programme under grant agreement n°101003906.

Melt-spinning investigation						
Capillary diam.	Different Blend	Shape				
0,35 and 0,60 mm	Recycled material content from 50% to 100%	Bi-component (Core/Sheath)				
Impact of the resin shearing	Impact of the blend viscosity	Increase recycled material content				

SCIRT.


Project Partners

Thank you. Let's keep in touch.

